論文の概要: Using Source-Side Confidence Estimation for Reliable Translation into Unfamiliar Languages
- arxiv url: http://arxiv.org/abs/2503.23305v1
- Date: Sun, 30 Mar 2025 04:03:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.048521
- Title: Using Source-Side Confidence Estimation for Reliable Translation into Unfamiliar Languages
- Title(参考訳): 情報源側信頼度推定を用いた未知言語への信頼度変換
- Authors: Kenneth J. Sible, David Chiang,
- Abstract要約: 対象言語に精通していないユーザを対象とした対話型機械翻訳(MT)システムを提案する。
誤訳の可能性のある単語を識別し、ユーザーが誤訳を修正できるようにすることで、信頼性と説明可能性を向上させることを目的としている。
- 参考スコア(独自算出の注目度): 8.908747084128397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an interactive machine translation (MT) system designed for users who are not proficient in the target language. It aims to improve trustworthiness and explainability by identifying potentially mistranslated words and allowing the user to intervene to correct mistranslations. However, confidence estimation in machine translation has traditionally focused on the target side. Whereas the conventional approach to source-side confidence estimation would have been to project target word probabilities to the source side via word alignments, we propose a direct, alignment-free approach that measures how sensitive the target word probabilities are to changes in the source embeddings. Experimental results show that our method outperforms traditional alignment-based methods at detection of mistranslations.
- Abstract(参考訳): 対象言語に精通していないユーザを対象とした対話型機械翻訳(MT)システムを提案する。
誤訳した可能性のある単語を識別し、ユーザーが誤訳を修正できるようにすることで、信頼性と説明可能性を向上させることを目的としている。
しかし、機械翻訳における信頼度推定は、伝統的にターゲット側に焦点を合わせてきた。
ソース側信頼度推定の従来の手法は,単語アライメントによって対象単語の確率をソース側に投影するものだったが,対象単語の確率がソース埋め込みの変化にどれほど敏感であるかを計測する,直接的かつアライメントのない手法を提案する。
実験の結果,提案手法は誤訳検出において従来のアライメントに基づく手法よりも優れていた。
関連論文リスト
- BiVert: Bidirectional Vocabulary Evaluation using Relations for Machine
Translation [4.651581292181871]
本稿では,テキストから翻訳の感覚距離を評価するための双方向意味に基づく評価手法を提案する。
このアプローチでは、包括的な多言語百科事典BabelNetを用いる。
Factual analysis is a strong correlation between the average evaluations generated by our method and the human evaluations across various machine translation system for English- German language pair。
論文 参考訳(メタデータ) (2024-03-06T08:02:21Z) - A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models [23.384966485398184]
本稿では,多言語信頼度推定(MlingConf)の大規模言語モデル(LLM)に関する包括的調査を紹介する。
このベンチマークは、LAタスクのための4つの厳密にチェックされ、人間によって評価された高品質な多言語データセットと、言語の特定の社会的、文化的、地理的コンテキストに合わせて調整されたLSタスクからなる。
LAのタスクでは、英語が他の言語よりも言語的優位性を示す一方で、LSタスクでは、質問関連言語を用いてLSMを誘導し、多言語的信頼度推定において言語的優位性を改善することが示されている。
論文 参考訳(メタデータ) (2024-02-21T08:20:06Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Conformalizing Machine Translation Evaluation [9.89901717499058]
近年,機械翻訳評価のための不確実性推定手法が提案されている。
モデルの不確実性を過小評価する傾向があり、結果として、基礎的な真実をカバーしない誤った信頼区間をしばしば生み出す。
本稿では,共形予測(conformal prediction)の代替として,理論的に確立されたカバレッジ保証付き信頼区間を求める分布自由化手法を提案する。
論文 参考訳(メタデータ) (2023-06-09T19:36:18Z) - Evaluating Machine Translation Quality with Conformal Predictive
Distributions [0.0]
本稿では,機械翻訳における不確実性を評価するための新しい手法を提案する。
本手法は,6つの異なる言語対に対して,カバレッジとシャープネスの点で,単純だが効果的なベースラインよりも優れている。
論文 参考訳(メタデータ) (2023-06-02T13:56:30Z) - ConNER: Consistency Training for Cross-lingual Named Entity Recognition [96.84391089120847]
言語間の名前付きエンティティ認識は、対象言語のデータの不足に悩まされる。
言語間NERのための新しい一貫性トレーニングフレームワークとしてConNERを提案する。
論文 参考訳(メタデータ) (2022-11-17T07:57:54Z) - Evaluate Confidence Instead of Perplexity for Zero-shot Commonsense
Reasoning [85.1541170468617]
本稿では,コモンセンス推論の性質を再考し,新しいコモンセンス推論尺度であるNon-Replacement Confidence(NRC)を提案する。
提案手法は,2つのコモンセンス推論ベンチマークデータセットと,さらに7つのコモンセンス質問応答データセットに対してゼロショット性能を向上する。
論文 参考訳(メタデータ) (2022-08-23T14:42:14Z) - Understanding and Mitigating the Uncertainty in Zero-Shot Translation [92.25357943169601]
ゼロショット翻訳の不確実性の観点から、オフターゲット問題を理解し、緩和することを目的としている。
そこで本研究では,モデルトレーニングのためのトレーニングデータを認知するための,軽量かつ補完的な2つのアプローチを提案する。
提案手法は,強いMNMTベースライン上でのゼロショット翻訳の性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-05-20T10:29:46Z) - Unsupervised Alignment of Distributional Word Embeddings [0.0]
クロスドメインアライメントは、機械翻訳から伝達学習までのタスクにおいて重要な役割を果たす。
提案手法は,複数の言語対をまたいだバイリンガル語彙誘導タスクにおいて,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-03-09T16:39:06Z) - Conditional Bilingual Mutual Information Based Adaptive Training for
Neural Machine Translation [66.23055784400475]
トークンレベルの適応トレーニングアプローチはトークンの不均衡問題を緩和することができる。
条件付きバイリンガル相互情報(CBMI)という目標コンテキスト対応メトリックを提案する。
CBMIは、事前の統計計算なしで、モデルトレーニング中に効率的に計算することができる。
論文 参考訳(メタデータ) (2022-03-06T12:34:10Z) - Evaluating Predictive Uncertainty under Distributional Shift on Dialogue
Dataset [1.8907108368038217]
現実世界の会話では、配布外よりも広範な分散シフトインプットが存在する可能性がある。
本稿では,対話データセット上での汚職による段階的な分布変化を可能にする2つの方法を提案する。
実験の結果,既存の不確実性推定手法の性能は変化の増大とともに常に低下することがわかった。
論文 参考訳(メタデータ) (2021-09-01T04:55:43Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
言語カバレッジバイアスは、ニューラルネットワーク翻訳(NMT)において重要である。
実験を慎重に設計することにより、トレーニングデータにおける言語カバレッジバイアスの包括的分析を行う。
本稿では,言語カバレッジバイアス問題を軽減するための,シンプルで効果的な2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T01:55:34Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。