A Systematic Decade Review of Trip Route Planning with Travel Time Estimation based on User Preferences and Behavior
- URL: http://arxiv.org/abs/2503.23486v1
- Date: Sun, 30 Mar 2025 15:41:44 GMT
- Title: A Systematic Decade Review of Trip Route Planning with Travel Time Estimation based on User Preferences and Behavior
- Authors: Nikil Jayasuriya, Deshan Sumanathilaka,
- Abstract summary: This paper systematically explores the advancements in adaptive trip route planning and travel time estimation through Artificial Intelligence (AI)<n>established AI techniques, including Machine Learning (ML), Reinforcement Learning (RL), and Graph Neural Networks (GNNs)<n>The paper concludes with recommendations for leveraging AI to build efficient, transparent, and sustainable navigation systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper systematically explores the advancements in adaptive trip route planning and travel time estimation (TTE) through Artificial Intelligence (AI). With the increasing complexity of urban transportation systems, traditional navigation methods often struggle to accommodate dynamic user preferences, real-time traffic conditions, and scalability requirements. This study explores the contributions of established AI techniques, including Machine Learning (ML), Reinforcement Learning (RL), and Graph Neural Networks (GNNs), alongside emerging methodologies like Meta-Learning, Explainable AI (XAI), Generative AI, and Federated Learning. In addition to highlighting these innovations, the paper identifies critical challenges such as ethical concerns, computational scalability, and effective data integration, which must be addressed to advance the field. The paper concludes with recommendations for leveraging AI to build efficient, transparent, and sustainable navigation systems.
Related papers
- Generative AI in Transportation Planning: A Survey [50.88844036728445]
We present the first comprehensive framework for leveraging GenAI in transportation planning.<n>From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks.<n>We address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks.
arXiv Detail & Related papers (2025-03-10T10:33:31Z) - Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.<n>The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.<n>With the advancements in deep learning and edge computing, VAD has made significant progress.<n>This article offers an exhaustive tutorial for novices in NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection.<n>We empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
We introduce the principles of different generative AI techniques.
We classify tasks in ITS into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making.
We illustrate how generative AI techniques addresses key issues in these four different types of tasks.
arXiv Detail & Related papers (2023-12-13T16:13:23Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.