Dual Reasoning: A GNN-LLM Collaborative Framework for Knowledge Graph Question Answering
- URL: http://arxiv.org/abs/2406.01145v2
- Date: Thu, 06 Mar 2025 06:49:04 GMT
- Title: Dual Reasoning: A GNN-LLM Collaborative Framework for Knowledge Graph Question Answering
- Authors: Guangyi Liu, Yongqi Zhang, Yong Li, Quanming Yao,
- Abstract summary: We propose Dual-Reasoning, a novel framework that integrates an external system based on Graph Neural Network (GNN) for explicit reasoning on Knowledge Graphs (KGs)<n>We show that DualR achieves state-of-the-art performance while maintaining high efficiency and interpretability.
- Score: 38.31983923708175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) excel at intuitive, implicit reasoning. Guiding LLMs to construct thought chains can enhance their deliberate reasoning abilities, but also faces challenges such as hallucination. Knowledge Graphs (KGs) can provide explicit structured knowledge for LLMs to alleviate these issues. However, existing KG-enhanced methods often overlook explicit graph learning, making it challenging to efficiently provide precise reasoning chains for LLMs. Following dual-process theory, we propose Dual-Reasoning (DualR), a novel framework that integrates an external system based on Graph Neural Network (GNN) for explicit reasoning on KGs, complementing the implicit reasoning of LLMs through externalized reasoning chains. DualR designs an LLM-empowered GNN module for explicit learning on KGs, efficiently extracting high-quality reasoning chains. These reasoning chains are then refined to a knowledge-enhanced multiple-choice prompt, guiding a frozen LLM to reason thoughtfully for final answer determination. Extensive experiments on three benchmark KGQA datasets demonstrate that DualR achieves state-of-the-art performance while maintaining high efficiency and interpretability.
Related papers
- LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning.
Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs.
We propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF)
arXiv Detail & Related papers (2025-04-04T03:03:47Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.
However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.
This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.
We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data [0.9284740716447338]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation.
Recent research has shown promising results in leveraging knowledge graphs (KGs) to enhance LLM performance.
We have developed different techniques that tightly integrate KG structures and semantics into LLM representations.
arXiv Detail & Related papers (2024-12-14T02:51:47Z) - Logic Augmented Generation [1.534667887016089]
Large Language Models (LLMs) overcome those limitations making them suitable in open-ended tasks and unstructured environments.
We envision Logic Augmented Generation (LAG) that combines the benefits of the two worlds.
We exemplify LAG in two tasks of collective intelligence, i.e., medical diagnostics and climate projections.
arXiv Detail & Related papers (2024-11-21T10:54:35Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.
We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.
GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge.
Knowledge Graph Question Answering (KGQA) serves as a critical touchstone for the integration.
We propose an interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG)
arXiv Detail & Related papers (2024-09-05T01:11:58Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
This study proposes a collaborative training-free reasoning scheme involving tight cooperation between Knowledge Graph (KG) and Large Language Models (LLMs)
Through such a cooperative approach, our scheme achieves more reliable knowledge-based reasoning and facilitates the tracing of the reasoning results.
arXiv Detail & Related papers (2024-02-07T15:56:17Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z) - Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning [104.92384929827776]
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks.
They lack up-to-date knowledge and experience hallucinations during reasoning.
Knowledge graphs (KGs) offer a reliable source of knowledge for reasoning.
arXiv Detail & Related papers (2023-10-02T10:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.