Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
- URL: http://arxiv.org/abs/2503.23600v2
- Date: Mon, 14 Apr 2025 15:12:29 GMT
- Title: Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
- Authors: Fabian Jakob, Andrea Iannelli,
- Abstract summary: We analyze dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives.<n>We derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
Related papers
- Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
This paper examines a crucial subset of problems where both the objective and constraint functions are weakly convex.
Existing methods often face limitations, including slow convergence rates or reliance on double-loop designs.
We introduce a novel single-loop penalty-based algorithm to overcome these challenges.
arXiv Detail & Related papers (2025-04-21T17:15:48Z) - Towards Weaker Variance Assumptions for Stochastic Optimization [19.339358874690568]
We revisit a classical assumption for analyzing gradient algorithms where the squared norm of the subgradient is allowed to grow as fast as the squared norm of the optimization variable.
We analyze convex problems with functional constraints or regularized convex-concave min-max problems.
We obtain rates for optimality measures that do not require boundedness of the feasible set.
arXiv Detail & Related papers (2025-04-14T07:26:34Z) - New Lower Bounds for Stochastic Non-Convex Optimization through Divergence Composition [11.530542389959347]
We present fundamental limits of first-order optimization in a range of non-dimensional settings, including L-Convexity (QC), Quadratic Growth (smoothQG), and Restricted Inequalities (RSI)
arXiv Detail & Related papers (2025-02-19T19:21:00Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - A Penalty-Based Guardrail Algorithm for Non-Decreasing Optimization with Inequality Constraints [1.5498250598583487]
Traditional mathematical programming solvers require long computational times to solve constrained minimization problems.
We propose a penalty-based guardrail algorithm (PGA) to efficiently solve them.
arXiv Detail & Related papers (2024-05-03T10:37:34Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
We introduce a Poly-based optimization framework for achieving acceleration, based on the notion of fixed-time stability dynamical systems.
We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms.
arXiv Detail & Related papers (2021-12-02T16:04:40Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Exact Asymptotics for Linear Quadratic Adaptive Control [6.287145010885044]
We study the simplest non-bandit reinforcement learning problem: linear quadratic control (LQAC)
We derive expressions for the regret, estimation error, and prediction error of a stepwise-updating LQAC algorithm.
In simulations on both stable and unstable systems, we find that our theory also describes the algorithm's finite-sample behavior remarkably well.
arXiv Detail & Related papers (2020-11-02T22:43:30Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.