論文の概要: Partial Transportability for Domain Generalization
- arxiv url: http://arxiv.org/abs/2503.23605v1
- Date: Sun, 30 Mar 2025 22:06:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.202713
- Title: Partial Transportability for Domain Generalization
- Title(参考訳): 領域一般化のための部分輸送性
- Authors: Kasra Jalaldoust, Alexis Bellot, Elias Bareinboim,
- Abstract要約: 本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
- 参考スコア(独自算出の注目度): 56.37032680901525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fundamental task in AI is providing performance guarantees for predictions made in unseen domains. In practice, there can be substantial uncertainty about the distribution of new data, and corresponding variability in the performance of existing predictors. Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution, such as the generalization error of a classifier, given data from source domains and assumptions about the data generating mechanisms, encoded in causal diagrams. Our contribution is to provide the first general estimation technique for transportability problems, adapting existing parameterization schemes such Neural Causal Models to encode the structural constraints necessary for cross-population inference. We demonstrate the expressiveness and consistency of this procedure and further propose a gradient-based optimization scheme for making scalable inferences in practice. Our results are corroborated with experiments.
- Abstract(参考訳): AIの基本的なタスクは、目に見えないドメインでなされた予測のパフォーマンス保証を提供することである。
実際には、新しいデータの分布や、既存の予測器の性能の変動について、かなりの不確実性が存在する可能性がある。
本稿では,部分的識別と輸送可能性の理論に基づいて,分類器の一般化誤差やデータ生成機構の仮定など,対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、ニューラル因果モデルのような既存のパラメータ化スキームを適用して、クロスポピュレーション推論に必要な構造的制約を符号化する、輸送可能性問題に対する最初の一般的な推定手法を提供することである。
本手法の表現性と一貫性を実証し,拡張性のある推論を行うための勾配に基づく最適化手法を提案する。
我々の結果は実験と相関している。
関連論文リスト
- Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
非線形で非同定可能な構造関数が存在する場合でも分布の一般化を可能にする不変性という強い概念を導入する。
フレキシブルな機械学習手法を用いて,ブースト制御関数(BCF)を推定する制御Twicingアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-09T15:43:46Z) - Causality-oriented robustness: exploiting general noise interventions [4.64479351797195]
本稿では因果性指向のロバスト性に着目し,不変勾配(DRIG)を用いた分布ロバスト性を提案する。
DRIGはトレーニングデータにおける一般的なノイズ介入を利用して、目に見えない介入に対する堅牢な予測を行う。
我々のフレームワークには特別なケースとしてアンカー回帰が含まれており、より多様な摂動から保護される予測モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-07-18T16:22:50Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
機械学習モデルの根本的な課題は、アウト・オブ・ディストリビューション(OOD)データへの一般化である。
私たちはまず、DEC(Disentanglement-Constrained Domain Generalization)と呼ばれる制約付き最適化としてOOD一般化問題を定式化する。
この変換に基づいて、結合表現の不絡合と領域一般化のための原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:36:32Z) - Domain Generalization via Domain-based Covariance Minimization [4.414778226415752]
本稿では,領域間の条件分布の差を最小限に抑えるために,複数の領域に対する新しい分散測定法を提案する。
小規模なデータセットでは、未確認のテストデータセットよりも優れた一般化性能を示す、より良い定量的結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T19:30:15Z) - Variational Disentanglement for Domain Generalization [68.85458536180437]
本稿では,変分拡散ネットワーク(VDN)という効果的なフレームワークを提供することにより,領域一般化の課題に取り組むことを提案する。
VDNは、ドメイン固有の機能とタスク固有の機能を切り離し、タスク固有のフィーチャは、見えないが関連するテストデータにより良い一般化が期待できる。
論文 参考訳(メタデータ) (2021-09-13T09:55:32Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
本稿では、因果的観点からの包括的ミニマックス分析について述べる。
最小の最悪のリスクを持つサブセットを探索する効率的なアルゴリズムを提案する。
本手法の有効性と有効性は, 合成データとアルツハイマー病の診断で実証された。
論文 参考訳(メタデータ) (2021-07-05T09:07:29Z) - Domain Conditional Predictors for Domain Adaptation [3.951376400628575]
本稿では,入力データに依存することに加えて,基礎となるデータ生成分布に対する情報を利用する条件付きモデリング手法を検討する。
このようなアプローチは、現在のドメイン適応手法よりも一般的に適用可能であると論じる。
論文 参考訳(メタデータ) (2021-06-25T22:15:54Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。