Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
- URL: http://arxiv.org/abs/2503.23686v1
- Date: Mon, 31 Mar 2025 03:36:59 GMT
- Title: Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
- Authors: Oliver T. Schmidt,
- Abstract summary: Space-Time Projection (STP) is introduced as a data-driven forecasting approach for high-dimensional and time-resolved data.<n>The method computes extended space-time proper modes from training data spanning a prediction horizon comprising both hindcast and forecast intervals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Space-Time Projection (STP) is introduced as a data-driven forecasting approach for high-dimensional and time-resolved data. The method computes extended space-time proper orthogonal modes from training data spanning a prediction horizon comprising both hindcast and forecast intervals. Forecasts are then generated by projecting the hindcast portion of these modes onto new data, simultaneously leveraging their orthogonality and optimal correlation with the forecast extension. Rooted in Proper Orthogonal Decomposition (POD) theory, dimensionality reduction and time-delay embedding are intrinsic to the approach. For a given ensemble and fixed prediction horizon, the only tunable parameter is the truncation rank--no additional hyperparameters are required. The hindcast accuracy serves as a reliable indicator for short-term forecast accuracy and establishes a lower bound on forecast errors. The efficacy of the method is demonstrated using two datasets: transient, highly anisotropic simulations of supernova explosions in a turbulent interstellar medium, and experimental velocity fields of a turbulent high-subsonic engineering flow. In a comparative study with standard Long Short-Term Memory (LSTM) neural networks--acknowledging that alternative architectures or training strategies may yield different outcomes--the method consistently provided more accurate forecasts. Considering its simplicity and robust performance, STP offers an interpretable and competitive benchmark for forecasting high-dimensional transient and chaotic processes, relying purely on spatiotemporal correlation information.
Related papers
- Spatiotemporal Forecasting in Climate Data Using EOFs and Machine Learning Models: A Case Study in Chile [0.0]
This study employs an innovative and efficient hybrid methodology that integrates machine learning (ML) methods for time series forecasting with established statistical techniques.<n>The methodology is applied to a grid of climate data covering the territory of Chile.
arXiv Detail & Related papers (2025-02-21T01:34:38Z) - Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
We propose a data-driven learning framework, that leverages the predictive and feature extraction capabilities of the mixture models and seq2seq-based neural networks.
After training with this framework, the learned model can improve long-step prediction accuracy significantly.
The accuracy and effectiveness of the approach are evaluated by comparing the predicted trajectories with the ground truth.
arXiv Detail & Related papers (2024-09-25T21:08:25Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models.
We propose a generative adversarial deep neural network (GAN) trained to reproduce geologically consistent 2D sections of fluvial successions.
In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit.
arXiv Detail & Related papers (2022-07-04T12:52:38Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting [17.53378788483556]
Two common challenges afflicting long-horizon forecasting are the volatility of the predictions and their computational complexity.
We introduce N-HiTS, a model which addresses both challenges by incorporating novel hierarchical and multi-rate data sampling techniques.
We conduct an empirical evaluation demonstrating the advantages of N-HiTS over the state-of-the-art long-horizon forecasting methods.
arXiv Detail & Related papers (2022-01-30T17:52:19Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.