Spatiotemporal Forecasting in Climate Data Using EOFs and Machine Learning Models: A Case Study in Chile
- URL: http://arxiv.org/abs/2502.17495v1
- Date: Fri, 21 Feb 2025 01:34:38 GMT
- Title: Spatiotemporal Forecasting in Climate Data Using EOFs and Machine Learning Models: A Case Study in Chile
- Authors: Mauricio Herrera, Francisca Kleisinger, Andrés Wilsón,
- Abstract summary: This study employs an innovative and efficient hybrid methodology that integrates machine learning (ML) methods for time series forecasting with established statistical techniques.<n>The methodology is applied to a grid of climate data covering the territory of Chile.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective resource management and environmental planning in regions with high climatic variability, such as Chile, demand advanced predictive tools. This study addresses this challenge by employing an innovative and computationally efficient hybrid methodology that integrates machine learning (ML) methods for time series forecasting with established statistical techniques. The spatiotemporal data undergo decomposition using time-dependent Empirical Orthogonal Functions (EOFs), denoted as \(\phi_{k}(t)\), and their corresponding spatial coefficients, \(\alpha_{k}(s)\), to reduce dimensionality. Wavelet analysis provides high-resolution time and frequency information from the \(\phi_{k}(t)\) functions, while neural networks forecast these functions within a medium-range horizon \(h\). By utilizing various ML models, particularly a Wavelet - ANN hybrid model, we forecast \(\phi_{k}(t+h)\) up to a time horizon \(h\), and subsequently reconstruct the spatiotemporal data using these extended EOFs. This methodology is applied to a grid of climate data covering the territory of Chile. It transitions from a high-dimensional multivariate spatiotemporal data forecasting problem to a low-dimensional univariate forecasting problem. Additionally, cluster analysis with Dynamic Time Warping for defining similarities between rainfall time series, along with spatial coherence and predictability assessments, has been instrumental in identifying geographic areas where model performance is enhanced. This approach also elucidates the reasons behind poor forecast performance in regions or clusters with low spatial coherence and predictability. By utilizing cluster medoids, the forecasting process becomes more practical and efficient. This compound approach significantly reduces computational complexity while generating forecasts of reasonable accuracy and utility.
Related papers
- Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection [0.0]
Space-Time Projection (STP) is introduced as a data-driven forecasting approach for high-dimensional and time-resolved data.
The method computes extended space-time proper modes from training data spanning a prediction horizon comprising both hindcast and forecast intervals.
arXiv Detail & Related papers (2025-03-31T03:36:59Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - Deep Convolutional Architectures for Extrapolative Forecast in
Time-dependent Flow Problems [0.0]
Deep learning techniques are employed to model the system dynamics for advection dominated problems.
These models take as input a sequence of high-fidelity vector solutions for consecutive time-steps obtained from the PDEs.
Non-intrusive reduced-order modelling techniques such as deep auto-encoder networks are utilized to compress the high-fidelity snapshots.
arXiv Detail & Related papers (2022-09-18T03:45:56Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.