Mapping Geopolitical Bias in 11 Large Language Models: A Bilingual, Dual-Framing Analysis of U.S.-China Tensions
- URL: http://arxiv.org/abs/2503.23688v1
- Date: Mon, 31 Mar 2025 03:38:17 GMT
- Title: Mapping Geopolitical Bias in 11 Large Language Models: A Bilingual, Dual-Framing Analysis of U.S.-China Tensions
- Authors: William Guey, Pierrick Bougault, Vitor D. de Moura, Wei Zhang, Jose O. Gomes,
- Abstract summary: This study systematically analyzes geopolitical bias across 11 prominent Large Language Models (LLMs)<n>We generated 19,712 prompts designed to detect ideological leanings in model outputs.<n>U.S.-based models predominantly favored Pro-U.S. stances, while Chinese-origin models exhibited pronounced Pro-China biases.
- Score: 2.8202443616982884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study systematically analyzes geopolitical bias across 11 prominent Large Language Models (LLMs) by examining their responses to seven critical topics in U.S.-China relations. Utilizing a bilingual (English and Chinese) and dual-framing (affirmative and reverse) methodology, we generated 19,712 prompts designed to detect ideological leanings in model outputs. Responses were quantitatively assessed on a normalized scale from -2 (strongly Pro-China) to +2 (strongly Pro-U.S.) and categorized according to stance, neutrality, and refusal rates. The findings demonstrate significant and consistent ideological alignments correlated with the LLMs' geographic origins; U.S.-based models predominantly favored Pro-U.S. stances, while Chinese-origin models exhibited pronounced Pro-China biases. Notably, language and prompt framing substantially influenced model responses, with several LLMs exhibiting stance reversals based on prompt polarity or linguistic context. Additionally, we introduced comprehensive metrics to evaluate response consistency across languages and framing conditions, identifying variability and vulnerabilities in model behaviors. These results offer practical insights that can guide organizations and individuals in selecting LLMs best aligned with their operational priorities and geopolitical considerations, underscoring the importance of careful model evaluation in politically sensitive applications. Furthermore, the research highlights specific prompt structures and linguistic variations that can strategically trigger distinct responses from models, revealing methods for effectively navigating and influencing LLM outputs.
Related papers
- Echoes of Power: Investigating Geopolitical Bias in US and China Large Language Models [2.1028463367241033]
We investigate the geopolitical biases in US and Chinese Large Language Models (LLMs)<n>Our findings show notable biases in both models, reflecting distinct ideological perspectives and cultural influences.<n>This study highlights the potential of LLMs to shape public discourse and underscores the importance of critically assessing AI-generated content.
arXiv Detail & Related papers (2025-03-20T19:53:10Z) - Assessing Large Language Models in Agentic Multilingual National Bias [31.67058518564021]
Cross-language disparities in reasoning-based recommendations remain largely unexplored.<n>This study is the first to address this gap.<n>We investigate multilingual bias in state-of-the-art LLMs by analyzing their responses to decision-making tasks across multiple languages.
arXiv Detail & Related papers (2025-02-25T08:07:42Z) - ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models [75.05436691700572]
We introduce ExpliCa, a new dataset for evaluating Large Language Models (LLMs) in explicit causal reasoning.
We tested seven commercial and open-source LLMs on ExpliCa through prompting and perplexity-based metrics.
Surprisingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events.
arXiv Detail & Related papers (2025-02-21T14:23:14Z) - Large Language Models as Neurolinguistic Subjects: Discrepancy in Performance and Competence for Form and Meaning [49.60849499134362]
This study investigates the linguistic understanding of Large Language Models (LLMs) regarding signifier (form) and signified (meaning)<n>We introduce a neurolinguistic approach, utilizing a novel method that combines minimal pair and diagnostic probing to analyze activation patterns across model layers.<n>We found: (1) Psycholinguistic and neurolinguistic methods reveal that language performance and competence are distinct; (2) Direct probability measurement may not accurately assess linguistic competence; and (3) Instruction tuning won't change much competence but improve performance.
arXiv Detail & Related papers (2024-11-12T04:16:44Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities [27.940469021840745]
We present an evaluation protocol to assess the spatial reasoning capabilities of vision-language models (VLMs)
Despite some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs.
With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.
arXiv Detail & Related papers (2024-10-22T19:39:15Z) - Covert Bias: The Severity of Social Views' Unalignment in Language Models Towards Implicit and Explicit Opinion [0.40964539027092917]
We evaluate the severity of bias toward a view by using a biased model in edge cases of excessive bias scenarios.
Our findings reveal a discrepancy in LLM performance in identifying implicit and explicit opinions, with a general tendency of bias toward explicit opinions of opposing stances.
The direct, incautious responses of the unaligned models suggest a need for further refinement of decisiveness.
arXiv Detail & Related papers (2024-08-15T15:23:00Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
We conduct a rigorous evaluation of large language models' implicit bias towards certain demographics.<n>Inspired by psychometric principles, we propose three attack approaches, i.e., Disguise, Deception, and Teaching.<n>Our methods can elicit LLMs' inner bias more effectively than competitive baselines.
arXiv Detail & Related papers (2024-06-20T06:42:08Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.