Time-Series Forecasting via Topological Information Supervised Framework with Efficient Topological Feature Learning
- URL: http://arxiv.org/abs/2503.23757v2
- Date: Tue, 01 Apr 2025 03:34:55 GMT
- Title: Time-Series Forecasting via Topological Information Supervised Framework with Efficient Topological Feature Learning
- Authors: ZiXin Lin, Nur Fariha Syaqina Zulkepli,
- Abstract summary: Topological Data Analysis (TDA) has emerged as a powerful tool for extracting meaningful features from complex data structures.<n>Despite its success, the integration of TDA with time-series prediction remains underexplored.<n>This study proposes the Topological Information Supervised (TIS) Prediction framework, which leverages neural networks and Generative Adversarial Networks (CGANs) to generate synthetic topological features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological Data Analysis (TDA) has emerged as a powerful tool for extracting meaningful features from complex data structures, driving significant advancements in fields such as neuroscience, biology, machine learning, and financial modeling. Despite its success, the integration of TDA with time-series prediction remains underexplored due to three primary challenges: the limited utilization of temporal dependencies within topological features, computational bottlenecks associated with persistent homology, and the deterministic nature of TDA pipelines restricting generalized feature learning. This study addresses these challenges by proposing the Topological Information Supervised (TIS) Prediction framework, which leverages neural networks and Conditional Generative Adversarial Networks (CGANs) to generate synthetic topological features, preserving their distribution while significantly reducing computational time. We propose a novel training strategy that integrates topological consistency loss to improve the predictive accuracy of deep learning models. Specifically, we introduce two state-of-the-art models, TIS-BiGRU and TIS-Informer, designed to capture short-term and long-term temporal dependencies, respectively. Comparative experimental results demonstrate the superior performance of TIS models over conventional predictors, validating the effectiveness of integrating topological information. This work not only advances TDA-based time-series prediction but also opens new avenues for utilizing topological features in deep learning architectures.
Related papers
- Topology-Aware Conformal Prediction for Stream Networks [54.505880918607296]
We propose Spatio-Temporal Adaptive Conformal Inference (textttCISTA), a novel framework that integrates network topology and temporal dynamics into the conformal prediction framework.
Our results show that textttCISTA effectively balances prediction efficiency and coverage, outperforming existing conformal prediction methods for stream networks.
arXiv Detail & Related papers (2025-03-06T21:21:15Z) - Mind the truncation gap: challenges of learning on dynamic graphs with recurrent architectures [10.434476078553786]
Continuous-time dynamic graphs (CTDGs) pose challenges for machine learning (ML) approaches.
We show that a short truncation of backpropagation-through-time (BPTT) can limit the learning of dependencies beyond a single hop.
We argue that understanding and addressing this gap is essential as the importance of CTDGs grows.
arXiv Detail & Related papers (2024-12-30T16:07:41Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Hybridization of Persistent Homology with Neural Networks for Time-Series Prediction: A Case Study in Wave Height [0.0]
We introduce a feature engineering method that enhances the predictive performance of neural network models.<n>Specifically, we leverage computational topology techniques to derive valuable topological features from input data.<n>For time-ahead predictions, the enhancements in $R2$ score were significant for FNNs, RNNs, LSTM, and GRU models.
arXiv Detail & Related papers (2024-09-03T01:26:21Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Knowledge Enhanced Conditional Imputation for Healthcare Time-series [9.937117045677923]
Conditional Self-Attention Imputation (CSAI) is a novel recurrent neural network architecture designed to address the challenges of complex missing data patterns.
CSAI extends the current state-of-the-art neural network-based imputation methods by introducing key modifications specifically adapted to EHR data characteristics.
This work significantly advances the state of neural network imputation applied to EHRs by more closely aligning algorithmic imputation with clinical realities.
arXiv Detail & Related papers (2023-12-27T20:42:40Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models [53.67562579184457]
This paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex dependencies.
We present the first attempt to generalize the popular denoising diffusion models to STGs, leading to a novel non-autoregressive framework called DiffSTG.
Our approach combines the intrinsic-temporal learning capabilities STNNs with the uncertainty measurements of diffusion models.
arXiv Detail & Related papers (2023-01-31T13:42:36Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - SPATE-GAN: Improved Generative Modeling of Dynamic Spatio-Temporal
Patterns with an Autoregressive Embedding Loss [4.504870356809408]
We propose a novel loss objective combined with -GAN based on an autogressive embedding to reinforce the learning oftemporal dynamics.
We show that our embedding loss improves performance without any changes to the architecture of -GAN, highlighting our model's increased capacity for autocorrelationre structures.
arXiv Detail & Related papers (2021-09-30T12:10:05Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
A neural network computing framework, i.N.N., was developed to efficiently and accurately render a multistep-ahead prediction of a time series.
The framework has great potential in practical applications in artificial intelligence (AI) or machine learning fields.
arXiv Detail & Related papers (2021-07-03T06:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.