Spatiotemporal convolutional network for time-series prediction and
causal inference
- URL: http://arxiv.org/abs/2107.01353v1
- Date: Sat, 3 Jul 2021 06:20:43 GMT
- Title: Spatiotemporal convolutional network for time-series prediction and
causal inference
- Authors: Hao Peng, Pei Chen, Rui Liu, Luonan Chen
- Abstract summary: A neural network computing framework, i.N.N., was developed to efficiently and accurately render a multistep-ahead prediction of a time series.
The framework has great potential in practical applications in artificial intelligence (AI) or machine learning fields.
- Score: 21.895413699349966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making predictions in a robust way is not easy for nonlinear systems. In this
work, a neural network computing framework, i.e., a spatiotemporal
convolutional network (STCN), was developed to efficiently and accurately
render a multistep-ahead prediction of a time series by employing a
spatial-temporal information (STI) transformation. The STCN combines the
advantages of both the temporal convolutional network (TCN) and the STI
equation, which maps the high-dimensional/spatial data to the future temporal
values of a target variable, thus naturally providing the prediction of the
target variable. From the observed variables, the STCN also infers the causal
factors of the target variable in the sense of Granger causality, which are in
turn selected as effective spatial information to improve the prediction
robustness. The STCN was successfully applied to both benchmark systems and
real-world datasets, all of which show superior and robust performance in
multistep-ahead prediction, even when the data were perturbed by noise. From
both theoretical and computational viewpoints, the STCN has great potential in
practical applications in artificial intelligence (AI) or machine learning
fields as a model-free method based only on the observed data, and also opens a
new way to explore the observed high-dimensional data in a dynamical manner for
machine learning.
Related papers
- Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
We introduce the Dynamic System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework.
By integrating Voronoi tessellations with deep learning models, DSOVT is adept at predicting dynamical systems with sparse, unstructured observations.
Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics.
arXiv Detail & Related papers (2024-08-31T13:43:52Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Statistical process monitoring of artificial neural networks [1.3213490507208525]
In machine learning, the learned relationship between the input and the output must remain valid during the model's deployment.
We propose considering the latent feature representation of the data (called "embedding") generated by the ANN to determine the time when the data stream starts being nonstationary.
arXiv Detail & Related papers (2022-09-15T16:33:36Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
We use a data-driven approach to model a three-dimensional turbulent flow using cutting-edge Deep Learning techniques.
The accuracy of the model is assessed using statistical and physics-based metrics.
arXiv Detail & Related papers (2021-12-07T03:33:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.