A Multi-Stage Auto-Context Deep Learning Framework for Tissue and Nuclei Segmentation and Classification in H&E-Stained Histological Images of Advanced Melanoma
- URL: http://arxiv.org/abs/2503.23958v1
- Date: Mon, 31 Mar 2025 11:15:50 GMT
- Title: A Multi-Stage Auto-Context Deep Learning Framework for Tissue and Nuclei Segmentation and Classification in H&E-Stained Histological Images of Advanced Melanoma
- Authors: Nima Torbati, Anastasia Meshcheryakova, Diana Mechtcheriakova, Amirreza Mahbod,
- Abstract summary: Melanoma is the most lethal form of skin cancer, with an increasing incidence rate worldwide.<n>We propose a novel multi-stage deep learning approach by combining tissue and nuclei information in a unified framework.<n>Our approach achieved second and first place rankings in the PUMA challenge.
- Score: 0.774770116605161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Melanoma is the most lethal form of skin cancer, with an increasing incidence rate worldwide. Analyzing histological images of melanoma by localizing and classifying tissues and cell nuclei is considered the gold standard method for diagnosis and treatment options for patients. While many computerized approaches have been proposed for automatic analysis, most perform tissue-based analysis and nuclei (cell)-based analysis as separate tasks, which might be suboptimal. In this work, using the PUMA challenge dataset, we proposed a novel multi-stage deep learning approach by combining tissue and nuclei information in a unified framework based on the auto-context concept to perform segmentation and classification in histological images of melanoma. Through pre-training and further post-processing, our approach achieved second and first place rankings in the PUMA challenge, with average micro Dice tissue score and summed nuclei F1-score of 73.40% for Track 1 and 63.48% for Track 2, respectively. Our implementation for training and testing is available at: https://github.com/NimaTorbati/PumaSubmit
Related papers
- Cracking the PUMA Challenge in 24 Hours with CellViT++ and nnU-Net [1.8727813539150509]
The panoptic segmentation of nuclei and tissue in advanced melanoma (PUMA) challenge aims to improve tissue segmentation and nuclei detection in melanoma histopathology.<n>The pipeline combines two models, namely CellViT++ for nuclei detection and nnU-Net for tissue segmentation.<n>Results demonstrate a significant improvement in tissue segmentation, achieving a Dice score of 0.750, surpassing the baseline score of 0.629.
arXiv Detail & Related papers (2025-03-15T21:46:35Z) - Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
We propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification.
Our framework introduces two key components into the common MIL model architecture.
We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets.
arXiv Detail & Related papers (2025-03-08T04:51:58Z) - FECT: Classification of Breast Cancer Pathological Images Based on Fusion Features [1.9356426053533178]
We propose a novel breast cancer tissue classification model that Fused features of Edges, Cells, and Tissues (FECT)<n>Our model surpasses current advanced methods in terms of classification accuracy and F1 scores.<n>Our model exhibits interpretability and holds promise for significant roles in future clinical applications.
arXiv Detail & Related papers (2025-01-17T11:32:33Z) - CoNIC Challenge: Pushing the Frontiers of Nuclear Detection,
Segmentation, Classification and Counting [46.45578907156356]
We setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition.
We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue.
Our findings suggest that nuclei and eosinophils play an important role in the tumour microevironment.
arXiv Detail & Related papers (2023-03-11T01:21:13Z) - CIFF-Net: Contextual Image Feature Fusion for Melanoma Diagnosis [0.4129225533930966]
Melanoma is considered to be the deadliest variant of skin cancer causing around 75% of total skin cancer deaths.
To diagnose Melanoma, clinicians assess and compare multiple skin lesions of the same patient concurrently.
This concurrent multi-image comparative method has not been explored by existing deep learning-based schemes.
arXiv Detail & Related papers (2023-03-07T06:16:10Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
arXiv Detail & Related papers (2021-11-01T08:29:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - An Attention-based Weakly Supervised framework for Spitzoid Melanocytic
Lesion Diagnosis in WSI [1.0948946179065253]
Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer.
The gold standard for its diagnosis and prognosis is the analysis of skin biopsies.
We propose a novel end-to-end weakly-supervised deep learning model, based on inductive transfer learning with an improved convolutional neural network (CNN)
The framework is composed of a source model in charge of finding the tumor patch-level patterns, and a target model focuses on the specific diagnosis of a biopsy.
arXiv Detail & Related papers (2021-04-20T10:18:57Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.