From Colors to Classes: Emergence of Concepts in Vision Transformers
- URL: http://arxiv.org/abs/2503.24071v1
- Date: Mon, 31 Mar 2025 13:28:43 GMT
- Title: From Colors to Classes: Emergence of Concepts in Vision Transformers
- Authors: Teresa Dorszewski, Lenka Tětková, Robert Jenssen, Lars Kai Hansen, Kristoffer Knutsen Wickstrøm,
- Abstract summary: Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities.<n>We present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling.
- Score: 8.893890071904774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities. However, it remains understudied how ViTs process information layer by layer. Numerous studies have shown that convolutional neural networks (CNNs) extract features of increasing complexity throughout their layers, which is crucial for tasks like domain adaptation and transfer learning. ViTs, lacking the same inductive biases as CNNs, can potentially learn global dependencies from the first layers due to their attention mechanisms. Given the increasing importance of ViTs in computer vision, there is a need to improve the layer-wise understanding of ViTs. In this work, we present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling. Our findings reveal that ViTs encode concepts with increasing complexity throughout the network. Early layers primarily encode basic features such as colors and textures, while later layers represent more specific classes, including objects and animals. As the complexity of encoded concepts increases, the number of concepts represented in each layer also rises, reflecting a more diverse and specific set of features. Additionally, different pretraining strategies influence the quantity and category of encoded concepts, with finetuning to specific downstream tasks generally reducing the number of encoded concepts and shifting the concepts to more relevant categories.
Related papers
- Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain [0.0]
We take inspiration from neuroscience to shed light on how neural networks encode information at low (visual saliency) and high (semantic similarity) levels of abstraction.
We find that ResNets are more sensitive to saliency information than ViTs, when trained with object classification objectives.
We show that semantic encoding is a key factor in aligning AI with human visual perception, while saliency suppression is a non-brain-like strategy.
arXiv Detail & Related papers (2024-04-29T15:05:42Z) - Convolution-enhanced Evolving Attention Networks [41.684265133316096]
Evolving Attention-enhanced Dilated Convolutional (EA-DC-) Transformer outperforms state-of-the-art models significantly.
This is the first work that explicitly models the layer-wise evolution of attention maps.
arXiv Detail & Related papers (2022-12-16T08:14:04Z) - What do Vision Transformers Learn? A Visual Exploration [68.50771218442776]
Vision transformers (ViTs) are quickly becoming the de-facto architecture for computer vision.
This paper addresses the obstacles to performing visualizations on ViTs and explores the underlying differences between ViTs and CNNs.
We also conduct large-scale visualizations on a range of ViT variants, including DeiT, CoaT, ConViT, PiT, Swin, and Twin.
arXiv Detail & Related papers (2022-12-13T16:55:12Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - Learning with Capsules: A Survey [73.31150426300198]
Capsule networks were proposed as an alternative approach to Convolutional Neural Networks (CNNs) for learning object-centric representations.
Unlike CNNs, capsule networks are designed to explicitly model part-whole hierarchical relationships.
arXiv Detail & Related papers (2022-06-06T15:05:36Z) - Do Vision Transformers See Like Convolutional Neural Networks? [45.69780772718875]
Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks.
Are they acting like convolutional networks, or learning entirely different visual representations?
We find striking differences between the two architectures, such as ViT having more uniform representations across all layers.
arXiv Detail & Related papers (2021-08-19T17:27:03Z) - Tensor Methods in Computer Vision and Deep Learning [120.3881619902096]
tensors, or multidimensional arrays, are data structures that can naturally represent visual data of multiple dimensions.
With the advent of the deep learning paradigm shift in computer vision, tensors have become even more fundamental.
This article provides an in-depth and practical review of tensors and tensor methods in the context of representation learning and deep learning.
arXiv Detail & Related papers (2021-07-07T18:42:45Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.