Foundation Models For Seismic Data Processing: An Extensive Review
- URL: http://arxiv.org/abs/2503.24166v1
- Date: Mon, 31 Mar 2025 14:48:31 GMT
- Title: Foundation Models For Seismic Data Processing: An Extensive Review
- Authors: Fabian Fuchs, Mario Ruben Fernandez, Norman Ettrich, Janis Keuper,
- Abstract summary: Despite its importance, traditional seismic processing techniques face challenges such as noisy and damaged data.<n>Deep learning approaches have introduced effective and user-friendly alternatives.<n>Foundation models have gained traction in the seismic domain, due to their success in natural imaging.
- Score: 7.4728371558557365
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Seismic processing plays a crucial role in transforming raw data into high-quality subsurface images, pivotal for various geoscience applications. Despite its importance, traditional seismic processing techniques face challenges such as noisy and damaged data and the reliance on manual, time-consuming workflows. The emergence of deep learning approaches has introduced effective and user-friendly alternatives, yet many of these deep learning approaches rely on synthetic datasets and specialized neural networks. Recently, foundation models have gained traction in the seismic domain, due to their success in natural imaging. This paper investigates the application of foundation models in seismic processing on the tasks: demultiple, interpolation, and denoising. It evaluates the impact of different model characteristics, such as pre-training technique and neural network architecture, on performance and efficiency. Rather than proposing a single seismic foundation model, this paper critically examines various natural image foundation models and suggest some promising candidates for future exploration.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - DiffusionNOCS: Managing Symmetry and Uncertainty in Sim2Real Multi-Modal
Category-level Pose Estimation [20.676510832922016]
We propose a probabilistic model that relies on diffusion to estimate dense canonical maps crucial for recovering partial object shapes.
We introduce critical components to enhance performance by leveraging the strength of the diffusion models with multi-modal input representations.
Despite being trained solely on our generated synthetic data, our approach achieves state-of-the-art performance and unprecedented generalization qualities.
arXiv Detail & Related papers (2024-02-20T01:48:33Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - A comparison of different atmospheric turbulence simulation methods for
image restoration [64.24948495708337]
Atmospheric turbulence deteriorates the quality of images captured by long-range imaging systems.
Various deep learning-based atmospheric turbulence mitigation methods have been proposed in the literature.
We systematically evaluate the effectiveness of various turbulence simulation methods on image restoration.
arXiv Detail & Related papers (2022-04-19T16:21:36Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Spatiotemporal Modeling of Seismic Images for Acoustic Impedance
Estimation [12.653673008542155]
Machine learning-based inversion usually works in a trace-by-trace fashion on seismic data.
We propose a deep learning-based seismic inversion workflow that models each seismic trace not only temporally but also spatially.
arXiv Detail & Related papers (2020-06-28T00:19:58Z) - Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds [6.729108277517129]
This paper develops a framework that permits to autonomously generate a training dataset in heterogeneous cluttered backgrounds.
It is clear that the learning effectiveness of the proposed framework should be improved in complex and heterogeneous environments.
The performance of the proposed framework is investigated through empirical tests and compared with that of the model trained with the COCO dataset.
arXiv Detail & Related papers (2020-02-27T22:28:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.