Integrating Quantum-Classical Attention in Patch Transformers for Enhanced Time Series Forecasting
- URL: http://arxiv.org/abs/2504.00068v1
- Date: Mon, 31 Mar 2025 17:23:36 GMT
- Title: Integrating Quantum-Classical Attention in Patch Transformers for Enhanced Time Series Forecasting
- Authors: Sanjay Chakraborty, Fredrik Heintz,
- Abstract summary: QCAAPatchTF is a quantum attention network integrated with an advanced patch-based transformer.<n> leveraging quantum superpositions, entanglement, and variational quantum eigensolver principles.<n>QCAAPatchTF achieves state-of-the-art performance in both long-term and short-term forecasting, classification, and anomaly detection tasks.
- Score: 4.580983642743026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: QCAAPatchTF is a quantum attention network integrated with an advanced patch-based transformer, designed for multivariate time series forecasting, classification, and anomaly detection. Leveraging quantum superpositions, entanglement, and variational quantum eigensolver principles, the model introduces a quantum-classical hybrid self-attention mechanism to capture multivariate correlations across time points. For multivariate long-term time series, the quantum self-attention mechanism can reduce computational complexity while maintaining temporal relationships. It then applies the quantum-classical hybrid self-attention mechanism alongside a feed-forward network in the encoder stage of the advanced patch-based transformer. While the feed-forward network learns nonlinear representations for each variable frame, the quantum self-attention mechanism processes individual series to enhance multivariate relationships. The advanced patch-based transformer computes the optimized patch length by dividing the sequence length into a fixed number of patches instead of using an arbitrary set of values. The stride is then set to half of the patch length to ensure efficient overlapping representations while maintaining temporal continuity. QCAAPatchTF achieves state-of-the-art performance in both long-term and short-term forecasting, classification, and anomaly detection tasks, demonstrating state-of-the-art accuracy and efficiency on complex real-world datasets.
Related papers
- A temporal scale transformer framework for precise remaining useful life prediction in fuel cells [10.899223392837936]
Temporal Scale Transformer (TSTransformer) is an enhanced version of the inverted Transformer (iTransformer)
Unlike traditional Transformers that treat each timestep as an input token, TSTransformer maps sequences of varying lengths into tokens at different stages for inter-sequence modeling.
It improves local feature extraction, captures temporal scale characteristics, and reduces token count and computational costs.
arXiv Detail & Related papers (2025-04-08T23:42:54Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
We propose Quantum Adaptive Self-Attention (QASA), a novel hybrid architecture that enhances classical Transformer models with a quantum attention mechanism.
QASA replaces dot-product attention with a parameterized quantum circuit (PQC) that adaptively captures inter-token relationships in the quantum Hilbert space.
Experiments on synthetic time-series tasks demonstrate that QASA achieves faster convergence and superior generalization compared to both standard Transformers and reduced classical variants.
arXiv Detail & Related papers (2025-04-05T02:52:37Z) - Sentinel: Multi-Patch Transformer with Temporal and Channel Attention for Time Series Forecasting [48.52101281458809]
Transformer-based time series forecasting has recently gained strong interest due to the ability of transformers to model sequential data.<n>We propose Sentinel, a transformer-based architecture composed of an encoder able to extract contextual information from the channel dimension.<n>We introduce a multi-patch attention mechanism, which leverages the patching process to structure the input sequence in a way that can be naturally integrated into the transformer architecture.
arXiv Detail & Related papers (2025-03-22T06:01:50Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.
We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.
Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - Sequence Complementor: Complementing Transformers For Time Series Forecasting with Learnable Sequences [5.244482076690776]
We find that expressive capability of sequence representation is a key factor influencing Transformer performance in time forecasting.<n>We propose a novel attention mechanism with Sequence Complementors and prove feasible from an information theory perspective.
arXiv Detail & Related papers (2025-01-06T03:08:39Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a causal Transformer for unified time series forecasting.<n>Based on large-scale pre-training, Timer-XL achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention [0.464982780843177]
We present a variational quantum circuit architecture named Self-Attention Sequential Quantum Transformer Channel (SASQuaT)<n>Our approach leverages recent insights from kernel-based operator learning in the context of predicting vision transformer network using simple gate operations and a set of multi-dimensional quantum Fourier transforms.<n>To validate our approach, we consider image classification tasks in simulation and with hardware, where with only 9 qubits and a handful of parameters we are able to simultaneously embed and classify a grayscale image of handwritten digits with high accuracy.
arXiv Detail & Related papers (2024-03-21T18:00:04Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
We propose a novel correlated attention mechanism, which efficiently captures feature-wise dependencies, and can be seamlessly integrated within the encoder blocks of existing Transformers.
In particular, correlated attention operates across feature channels to compute cross-covariance matrices between queries and keys with different lag values, and selectively aggregate representations at the sub-series level.
This architecture facilitates automated discovery and representation learning of not only instantaneous but also lagged cross-correlations, while inherently capturing time series auto-correlation.
arXiv Detail & Related papers (2023-11-20T17:35:44Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.