A temporal scale transformer framework for precise remaining useful life prediction in fuel cells
- URL: http://arxiv.org/abs/2504.08803v1
- Date: Tue, 08 Apr 2025 23:42:54 GMT
- Title: A temporal scale transformer framework for precise remaining useful life prediction in fuel cells
- Authors: Zezhi Tang, Xiaoyu Chen, Xin Jin, Benyuan Zhang, Wenyu Liang,
- Abstract summary: Temporal Scale Transformer (TSTransformer) is an enhanced version of the inverted Transformer (iTransformer)<n>Unlike traditional Transformers that treat each timestep as an input token, TSTransformer maps sequences of varying lengths into tokens at different stages for inter-sequence modeling.<n>It improves local feature extraction, captures temporal scale characteristics, and reduces token count and computational costs.
- Score: 10.899223392837936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In exploring Predictive Health Management (PHM) strategies for Proton Exchange Membrane Fuel Cells (PEMFC), the Transformer model, widely used in data-driven approaches, excels in many fields but struggles with time series analysis due to its self-attention mechanism, which yields a complexity of the input sequence squared and low computational efficiency. It also faces challenges in capturing both global long-term dependencies and local details effectively. To tackle this, we propose the Temporal Scale Transformer (TSTransformer), an enhanced version of the inverted Transformer (iTransformer). Unlike traditional Transformers that treat each timestep as an input token, TSTransformer maps sequences of varying lengths into tokens at different stages for inter-sequence modeling, using attention to capture multivariate correlations and feed-forward networks (FFN) to encode sequence representations. By integrating a one-dimensional convolutional layer into the multivariate attention for multi-level scaling of K and V matrices, it improves local feature extraction, captures temporal scale characteristics, and reduces token count and computational costs. Experiments comparing TSTransformer with models like Long Short-Term Memory, iTransformer, and Transformer demonstrate its potential as a powerful tool for advancing PHM in renewable energy, effectively addressing the limitations of pure Transformer models in data-driven time series tasks.
Related papers
- PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization
for Enhanced Time Series Forecasting [28.646457377816795]
We introduce the Sparse Vector Quantized FFN-Free Transformer (Sparse-VQ)
Our methodology capitalizes on a sparse vector quantization technique coupled with Reverse Instance Normalization (RevIN) to reduce noise impact.
Our FFN-free approach trims the parameter count, enhancing computational efficiency and reducing overfitting.
arXiv Detail & Related papers (2024-02-08T17:09:12Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
We propose iTransformer, which simply applies the attention and feed-forward network on the inverted dimensions.
The iTransformer model achieves state-of-the-art on challenging real-world datasets.
arXiv Detail & Related papers (2023-10-10T13:44:09Z) - U-shaped Transformer: Retain High Frequency Context in Time Series
Analysis [0.5710971447109949]
In this paper, we consider the low-pass characteristics of transformers and try to incorporate the advantages of them.
We introduce patch merge and split operation to extract features with different scales and use larger datasets to fully make use of the transformer backbone.
Our experiments demonstrate that the model performs at an advanced level across multiple datasets with relatively low cost.
arXiv Detail & Related papers (2023-07-18T07:15:26Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
We build a transformer model for non-stationary time series using wavelet-based transformer encoder architecture.
We evaluate our framework on several publicly available benchmark time series datasets from various domains.
arXiv Detail & Related papers (2022-09-08T17:39:38Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
We propose a solution named TransMOT to efficiently model the spatial and temporal interactions among objects in a video.
TransMOT is not only more computationally efficient than the traditional Transformer, but it also achieves better tracking accuracy.
The proposed method is evaluated on multiple benchmark datasets including MOT15, MOT16, MOT17, and MOT20.
arXiv Detail & Related papers (2021-04-01T01:49:05Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.