論文の概要: Contradiction Detection in RAG Systems: Evaluating LLMs as Context Validators for Improved Information Consistency
- arxiv url: http://arxiv.org/abs/2504.00180v1
- Date: Mon, 31 Mar 2025 19:41:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:25:14.374323
- Title: Contradiction Detection in RAG Systems: Evaluating LLMs as Context Validators for Improved Information Consistency
- Title(参考訳): RAGシステムにおけるコントラクション検出:情報整合性向上のための文脈検証器としてのLLMの評価
- Authors: Vignesh Gokul, Srikanth Tenneti, Alwarappan Nakkiran,
- Abstract要約: Retrieval Augmented Generation (RAG) システムは,大規模言語モデル(LLM)を最新情報で拡張するための強力な手法として登場した。
RAGは、特にニュースのような急速に進化する領域において、矛盾する情報を含む文書を提示することがある。
本研究では,RAGシステムの検索段階において発生する様々な矛盾をシミュレートする新しいデータ生成フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.6827423171182154
- License:
- Abstract: Retrieval Augmented Generation (RAG) systems have emerged as a powerful method for enhancing large language models (LLMs) with up-to-date information. However, the retrieval step in RAG can sometimes surface documents containing contradictory information, particularly in rapidly evolving domains such as news. These contradictions can significantly impact the performance of LLMs, leading to inconsistent or erroneous outputs. This study addresses this critical challenge in two ways. First, we present a novel data generation framework to simulate different types of contradictions that may occur in the retrieval stage of a RAG system. Second, we evaluate the robustness of different LLMs in performing as context validators, assessing their ability to detect contradictory information within retrieved document sets. Our experimental results reveal that context validation remains a challenging task even for state-of-the-art LLMs, with performance varying significantly across different types of contradictions. While larger models generally perform better at contradiction detection, the effectiveness of different prompting strategies varies across tasks and model architectures. We find that chain-of-thought prompting shows notable improvements for some models but may hinder performance in others, highlighting the complexity of the task and the need for more robust approaches to context validation in RAG systems.
- Abstract(参考訳): Retrieval Augmented Generation (RAG) システムは,大規模言語モデル(LLM)を最新情報で拡張するための強力な手法として登場した。
しかしながら、RAGにおける検索ステップは、特にニュースのような急速に進化する領域において、矛盾する情報を含む文書を探索することがある。
これらの矛盾はLLMの性能に大きく影響し、不整合または誤出力をもたらす。
本研究は、この重要な課題を2つの方法で解決する。
まず、RAGシステムの検索段階で発生する様々な矛盾をシミュレートする新しいデータ生成フレームワークを提案する。
第2に,検索した文書集合内の矛盾情報を検出する能力を評価し,文脈検証を行う上で,異なるLCMのロバスト性を評価する。
実験結果から,現状のLLMにおいてもコンテキスト検証は依然として困難な課題であり,異なるタイプの矛盾に対して性能が著しく異なることが明らかとなった。
より大きなモデルは一般的に矛盾検出において優れた性能を発揮するが、異なるプロンプト戦略の有効性はタスクやモデルアーキテクチャによって異なる。
チェーン・オブ・シグネリングはいくつかのモデルにおいて顕著な改善を示すが、他のモデルではパフォーマンスを損なう可能性があり、タスクの複雑さとRAGシステムにおけるコンテキスト検証に対するより堅牢なアプローチの必要性を強調している。
関連論文リスト
- Agentic Verification for Ambiguous Query Disambiguation [42.238086712267396]
本稿では,検索拡張世代(RAG)における問合せの曖昧化という課題に対処する。
本稿では,早期にレシーバとジェネレータからのフィードバックを取り入れて,ダイバーシフィケーションと検証を一体化するための共同手法を提案する。
広く採用されているASQAベンチマークにおいて,本手法の有効性と有効性を検証し,多種多様かつ検証可能な解釈を実現する。
論文 参考訳(メタデータ) (2025-02-14T18:31:39Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
大規模言語モデル(LLM)の重大な脆弱性について検討する。
この現象は、セマンティック・コヒーレントだが無関係な文脈で修正された質問に対して、モデルが一貫した性能を維持することができないときに発生する。
本稿では,CDVの例を自動生成する効率的な木探索手法を提案する。
論文 参考訳(メタデータ) (2025-02-03T18:43:36Z) - Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations [4.697267141773321]
Retrieval-augmented Generation (RAG) は、よりリッチな現実的コンテキストに体系的にアクセスする大規模言語モデル(LLM)をサポートするために、現代のNLPにおいて重要なメカニズムとして登場した。
近年の研究では、LLMはRAGに基づくインコンテキスト情報(誤った推論や幻覚につながる可能性のある制限)を批判的に分析するのに苦慮していることが示されている。
本稿では,RAGにおける批判的推論を,対照的な説明を通じてどのように引き起こすかを検討する。
論文 参考訳(メタデータ) (2024-10-30T10:11:53Z) - Toward Robust RALMs: Revealing the Impact of Imperfect Retrieval on Retrieval-Augmented Language Models [5.10832476049103]
提案手法では,ALMを実世界の実例と混同しうるシナリオを3つ同定する。
我々は,新たな敵攻撃法,生成モデルに基づくADVersarial attack (GenADV) と,付加文書(RAD)に基づく新しい計量ロバストネスを提案する。
以上の結果から,ALMは文書集合の未解決性や矛盾を識別できないことが多く,幻覚につながることが多かった。
論文 参考訳(メタデータ) (2024-10-19T13:40:33Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とLLMのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
大規模言語モデル(LLM)の強化を目的とした最近の検索拡張生成(RAG)
本稿では,外部検索の正しさと内部生成の整合性を高めるためのチェーン・オブ・バリフィケーション(CoV-RAG)を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:34:54Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
本稿では,強力な大規模言語モデル(LLM)に対するMGT検出のための最初のベンチマークフレームワークを提案する。
一般に単語が多ければ多いほど性能が向上し,ほとんどの検出手法はトレーニングサンプルをはるかに少なくして同様の性能が得られることを示す。
本研究は, テキスト属性タスクにおいて, モデルに基づく検出手法が依然として有効であることを示す。
論文 参考訳(メタデータ) (2023-03-26T21:12:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。