論文の概要: Insight-RAG: Enhancing LLMs with Insight-Driven Augmentation
- arxiv url: http://arxiv.org/abs/2504.00187v1
- Date: Mon, 31 Mar 2025 19:50:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:46.100882
- Title: Insight-RAG: Enhancing LLMs with Insight-Driven Augmentation
- Title(参考訳): Insight-RAG: Insight-Driven AugmentationによるLLMの強化
- Authors: Pouya Pezeshkpour, Estevam Hruschka,
- Abstract要約: 本稿では,インサイトに基づく文書検索のための新しいフレームワークであるInsight-RAGを提案する。
Insight-RAG の初期段階では,従来の検索手法の代わりに LLM を用いて入力クエリとタスクを解析する。
従来のRAG手法と同様に、元のクエリを抽出した洞察と統合することにより、最終的なLCMを用いて、文脈的に豊かで正確な応答を生成する。
- 参考スコア(独自算出の注目度): 4.390998479503661
- License:
- Abstract: Retrieval Augmented Generation (RAG) frameworks have shown significant promise in leveraging external knowledge to enhance the performance of large language models (LLMs). However, conventional RAG methods often retrieve documents based solely on surface-level relevance, leading to many issues: they may overlook deeply buried information within individual documents, miss relevant insights spanning multiple sources, and are not well-suited for tasks beyond traditional question answering. In this paper, we propose Insight-RAG, a novel framework designed to address these issues. In the initial stage of Insight-RAG, instead of using traditional retrieval methods, we employ an LLM to analyze the input query and task, extracting the underlying informational requirements. In the subsequent stage, a specialized LLM -- trained on the document database -- is queried to mine content that directly addresses these identified insights. Finally, by integrating the original query with the retrieved insights, similar to conventional RAG approaches, we employ a final LLM to generate a contextually enriched and accurate response. Using two scientific paper datasets, we created evaluation benchmarks targeting each of the mentioned issues and assessed Insight-RAG against traditional RAG pipeline. Our results demonstrate that the Insight-RAG pipeline successfully addresses these challenges, outperforming existing methods by a significant margin in most cases. These findings suggest that integrating insight-driven retrieval within the RAG framework not only enhances performance but also broadens the applicability of RAG to tasks beyond conventional question answering.
- Abstract(参考訳): Retrieval Augmented Generation (RAG)フレームワークは、大規模な言語モデル(LLM)の性能を高めるために外部知識を活用する上で大きな可能性を示している。
しかし、従来のRAG法では、個々の文書に深く埋もれた情報を見落とし、複数の情報源にまたがる関連する洞察を見逃し、従来の質問応答以上のタスクには適さない、といった問題が発生する。
本稿では,これらの問題に対処するための新しいフレームワークであるInsight-RAGを提案する。
Insight-RAGの初期段階では、従来の検索手法の代わりにLLMを用いて入力クエリとタスクを分析し、基礎となる情報要求を抽出する。
その後の段階では、ドキュメントデータベースでトレーニングされた専門的なLLMがクエリされ、これらの特定された洞察に直接対処するコンテンツがマイニングされます。
最後に、従来のRAGアプローチと同様に、元のクエリを抽出した洞察と統合することにより、最終的なLCMを用いて、文脈的に豊かで正確な応答を生成する。
2つの科学的論文データセットを用いて,各問題を対象とした評価ベンチマークを作成し,従来のRAGパイプラインに対してInsight-RAGを評価した。
その結果、Insight-RAGパイプラインはこれらの課題にうまく対処し、ほとんどの場合、既存の手法よりも優れたマージンを持つことがわかった。
これらの結果から,RAGフレームワークにおける洞察駆動検索の統合は,パフォーマンスの向上だけでなく,従来の質問応答以外のタスクにもRAGの適用性を高めることが示唆された。
関連論文リスト
- Long Context vs. RAG for LLMs: An Evaluation and Revisits [41.27137478456755]
本稿は、このトピックに関する最近の研究を再考し、その重要な洞察と相違点を明らかにする。
LCは、特にウィキペディアベースの質問に対して、質問応答ベンチマークにおいてRAGよりも優れていた。
また,既存の研究における文脈関連性の重要性を概観する,詳細な議論もおこなう。
論文 参考訳(メタデータ) (2024-12-27T14:34:37Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では、視覚言語モデル(VLM)に基づくRAGパイプラインを確立することにより、この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG)は、検索ツールを利用して外部データベースにアクセスする。
既存のRAGシステムは主に簡単な質問応答タスクに有効である。
本稿では,MemoRAGを提案する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
本稿では,RAGパイプラインの既存の制約について検討し,テキスト検索の方法を紹介する。
高度なチャンキングテクニック、クエリ拡張、メタデータアノテーションの組み込み、再ランク付けアルゴリズムの適用、埋め込みアルゴリズムの微調整などの戦略を練っている。
論文 参考訳(メタデータ) (2024-03-23T00:49:40Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。