論文の概要: Detecting Glioma, Meningioma, and Pituitary Tumors, and Normal Brain Tissues based on Yolov11 and Yolov8 Deep Learning Models
- arxiv url: http://arxiv.org/abs/2504.00189v1
- Date: Mon, 31 Mar 2025 19:50:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:23:16.656918
- Title: Detecting Glioma, Meningioma, and Pituitary Tumors, and Normal Brain Tissues based on Yolov11 and Yolov8 Deep Learning Models
- Title(参考訳): Yolov11およびYolov8ディープラーニングモデルによるグリオーマ、髄膜腫、下垂体腫瘍および正常脳組織の検出
- Authors: Ahmed M. Taha, Salah A. Aly, Mohamed F. Darwish,
- Abstract要約: 本稿では,YoloV11およびYoloV8深層学習モデルを用いて,グリオーマ,髄膜腫,下垂体脳腫瘍を検出するための高度なAI駆動手法を提案する。
移動学習に基づく微調整手法を用いて、最先端の深層学習技術と医療画像を統合し、脳腫瘍をNo-Tumor, Glioma, Meningioma, Pituitary tumorの4つのカテゴリに分類する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate and quick diagnosis of normal brain tissue Glioma, Meningioma, and Pituitary Tumors is crucial for optimal treatment planning and improved medical results. Magnetic Resonance Imaging (MRI) is widely used as a non-invasive diagnostic tool for detecting brain abnormalities, including tumors. However, manual interpretation of MRI scans is often time-consuming, prone to human error, and dependent on highly specialized expertise. This paper proposes an advanced AI-driven technique to detecting glioma, meningioma, and pituitary brain tumors using YoloV11 and YoloV8 deep learning models. Methods: Using a transfer learning-based fine-tuning approach, we integrate cutting-edge deep learning techniques with medical imaging to classify brain tumors into four categories: No-Tumor, Glioma, Meningioma, and Pituitary Tumors. Results: The study utilizes the publicly accessible CE-MRI Figshare dataset and involves fine-tuning pre-trained models YoloV8 and YoloV11 of 99.49% and 99.56% accuracies; and customized CNN accuracy of 96.98%. The results validate the potential of CNNs in achieving high precision in brain tumor detection and classification, highlighting their transformative role in medical imaging and diagnostics.
- Abstract(参考訳): 正常脳組織Glioma, Meningioma, Pituitary tumorsの正確な診断は, 適切な治療計画と治療成績の改善に不可欠である。
MRIは、腫瘍を含む脳の異常を検出する非侵襲的診断ツールとして広く用いられている。
しかし、MRIスキャンのマニュアル解釈は、しばしば時間がかかり、ヒューマンエラーの傾向があり、高度に専門的な専門知識に依存している。
本稿では,YoloV11およびYoloV8深層学習モデルを用いて,グリオーマ,髄膜腫,下垂体脳腫瘍を検出するための高度なAI駆動手法を提案する。
方法: 伝達学習に基づく微調整手法を用いて, 最先端の深層学習技術と医用画像を統合し, 脳腫瘍を非腫瘍, グリオーマ, 髄膜腫, 管状腫瘍の4つのカテゴリに分類する。
結果:この研究はCE-MRI Figshareデータセットを使用し、99.49%と99.56%の精度のヨロV8とヨーロV11を微調整し、96.98%の精度でCNNをカスタマイズした。
以上の結果から,脳腫瘍の診断・分類におけるCNNの有用性が検証され,医療画像・診断におけるCNNの転換的役割が明らかにされた。
関連論文リスト
- SKIPNet: Spatial Attention Skip Connections for Enhanced Brain Tumor Classification [3.8233569758620063]
脳腫瘍の早期発見は、タイムリーな治療には不可欠であるが、遠隔地では診断施設へのアクセスが制限されている。
本研究では,MRIデータを用いた脳腫瘍の自動検出と分類のためのディープラーニングモデルを提案する。
空間的注意を取り入れたこのモデルは96.90%の精度を達成し、パターン認識を改善するために文脈情報の集約を強化した。
論文 参考訳(メタデータ) (2024-12-10T18:32:42Z) - Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
脳腫瘍は生命を脅かす問題であり、人間の身体の正常な機能を損なう。
医用画像におけるディープラーニングアルゴリズムの使用により、脳腫瘍の分類と診断が大幅に改善された。
本研究の目的は,機械学習を用いた脳腫瘍検出のための予測システムを開発することである。
論文 参考訳(メタデータ) (2024-07-15T11:30:40Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - Brain Tumors Classification for MR images based on Attention Guided Deep
Learning Model [3.6328238032703806]
我々は既存の技術を分析し、注意誘導深層畳み込みニューラルネットワーク(CNN)モデルを提案する。
腫瘍の有無を特定するための10倍のクロスバリデーション下での平均精度99.18%を達成できる。
医師が脳腫瘍の効率的な診断を行うのを助ける。
論文 参考訳(メタデータ) (2021-04-06T07:25:52Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
がんは世界で2番目に多い死因であり、2018年だけで950万人以上が死亡している。
脳腫瘍は4件のがん死亡のうち1件を数えている。
本稿では,エンコーダブロックを含むディープラーニングに基づくシステムを提案する。
3064 MR画像からなるデータセット上でのこのモデルの実験的評価は、95.98%の精度を示しており、このデータベースに関する以前の研究より優れている。
論文 参考訳(メタデータ) (2020-11-01T21:19:38Z) - Deep Convolutional Neural Networks Model-based Brain Tumor Detection in
Brain MRI Images [0.0]
我々の研究は、MR画像から脳腫瘍を診断するためのディープ畳み込みニューラルネットワーク(DCNN)を実装することである。
本モデルでは, 腫瘍でMR像を抽出し, 全体的な精度は96%であった。
論文 参考訳(メタデータ) (2020-10-03T07:42:17Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。