論文の概要: Over-the-Air Edge Inference via End-to-End Metasurfaces-Integrated Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2504.00233v1
- Date: Mon, 31 Mar 2025 21:14:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:18:03.060035
- Title: Over-the-Air Edge Inference via End-to-End Metasurfaces-Integrated Artificial Neural Networks
- Title(参考訳): 終端から終端への準曲面を含むニューラルネットワークによるオーバー・ザ・エアエッジ推論
- Authors: Kyriakos Stylianopoulos, Paolo Di Lorenzo, George C. Alexandropoulos,
- Abstract要約: エッジ推論(EI)のための準曲面統合ニューラルネットワーク(MINN)の枠組みを提案する。
MINNは、EI要求を大幅に単純化し、トレーニングに比べて50ドル以下で、ほぼ最適性能を達成できる。
- 参考スコア(独自算出の注目度): 29.28415364984592
- License:
- Abstract: In the Edge Inference (EI) paradigm, where a Deep Neural Network (DNN) is split across the transceivers to wirelessly communicate goal-defined features in solving a computational task, the wireless medium has been commonly treated as a source of noise. In this paper, motivated by the emerging technologies of Reconfigurable Intelligent Surfaces (RISs) and Stacked Intelligent Metasurfaces (SIM) that offer programmable propagation of wireless signals, either through controllable reflections or diffractions, we optimize the RIS/SIM-enabled smart wireless environment as a means of over-the-air computing, resembling the operations of DNN layers. We propose a framework of Metasurfaces-Integrated Neural Networks (MINNs) for EI, presenting its modeling, training through a backpropagation variation for fading channels, and deployment aspects. The overall end-to-end DNN architecture is general enough to admit RIS and SIM devices, through controllable reconfiguration before each transmission or fixed configurations after training, while both channel-aware and channel-agnostic transceivers are considered. Our numerical evaluation showcases metasurfaces to be instrumental in performing image classification under link budgets that impede conventional communications or metasurface-free systems. It is demonstrated that our MINN framework can significantly simplify EI requirements, achieving near-optimal performance with $50~$dB lower testing signal-to-noise ratio compared to training, even without transceiver channel knowledge.
- Abstract(参考訳): エッジ推論(EI)パラダイムでは、ディープニューラルネットワーク(DNN)がトランシーバー間で分割され、計算タスクの解決においてゴール定義された特徴を無線で伝達する。
本稿では,制御可能な反射法や回折法により,無線信号のプログラマブルな伝搬を可能にする,再構成可能なインテリジェントサーフェス (RIS) とスタックされたインテリジェントメタサーフェス (SIM) の新興技術に動機付けられ,DNN層の操作に類似した,RIS/SIM対応のスマート無線環境を最適化する。
本稿では,EIのためのメタ曲面統合ニューラルネットワーク(MINN)のフレームワークを提案し,そのモデリング,フェージングチャネルのバックプロパゲーション変動によるトレーニング,デプロイメントの側面について述べる。
エンド・ツー・エンドのDNNアーキテクチャは、各トランスミッション前やトレーニング後の固定構成の制御可能な再構成を通じて、RISとSIMデバイスを受け入れるのに十分な汎用性を備え、チャネル認識およびチャネル非依存のトランシーバも考慮されている。
提案手法は,従来の通信や準曲面のないシステムを阻害するリンク予算の下で画像分類を行う上で有用であることを示す。
トランスシーバチャネルの知識がなくても,MINN フレームワークは EI 要求を大幅に単純化でき,50〜$dB の低信号-雑音比でほぼ最適性能を達成できることが実証された。
関連論文リスト
- Topological Neural Networks over the Air [13.291627429657416]
トポロジカルニューラルネットワーク(TNN)は、トポロジカル空間上のデータから表現をモデル化する情報処理アーキテクチャである。
本稿では,無線通信モデルをアーキテクチャに組み込んだ,常連セルコンプレックスを用いた新しいTNN設計を提案する。
論文 参考訳(メタデータ) (2025-02-14T10:45:36Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Reconfigurable Intelligent Surface Enabled Spatial Multiplexing with
Fully Convolutional Network [40.817290717344534]
RIS(Reconfigurable Surface)は、無線通信システムのための新興技術である。
本稿では,この問題を解決するために完全畳み込みネットワーク(WSNFC)を提案する。
我々は、RISとダイレクトチャネルを経由するカスケードチャネルを含む一連のチャネル機能を設計する。
論文 参考訳(メタデータ) (2022-01-08T14:16:00Z) - A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints [4.727307803726522]
RIS支援マルチユーザマルチインプットシングルアウトプットダウンリンク通信システムについて検討する。
我々は、アクティブビームフォーミングとパッシブビームフォーミングを同時に設計するディープ量子化ニューラルネットワーク(DQNN)を開発した。
提案した2つのDQNNアルゴリズムは、離散位相シフトと不完全なCSIが同時に考慮される場合に拡張する。
論文 参考訳(メタデータ) (2021-11-12T03:53:20Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。