論文の概要: DiffDenoise: Self-Supervised Medical Image Denoising with Conditional Diffusion Models
- arxiv url: http://arxiv.org/abs/2504.00264v1
- Date: Mon, 31 Mar 2025 22:15:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:00.157432
- Title: DiffDenoise: Self-Supervised Medical Image Denoising with Conditional Diffusion Models
- Title(参考訳): DiffDenoise: 条件付き拡散モデルを用いた自己監督型医療画像
- Authors: Basar Demir, Yikang Liu, Xiao Chen, Eric Z. Chen, Lin Zhao, Boris Mailhe, Terrence Chen, Shanhui Sun,
- Abstract要約: DiffDenoiseは、医用画像に適した強力な自己監督型認知的アプローチである。
以上の結果から,DiffDenoiseは,医用画像の合成と実世界の両面で,既存の最先端の手法よりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 15.941115339422655
- License:
- Abstract: Many self-supervised denoising approaches have been proposed in recent years. However, these methods tend to overly smooth images, resulting in the loss of fine structures that are essential for medical applications. In this paper, we propose DiffDenoise, a powerful self-supervised denoising approach tailored for medical images, designed to preserve high-frequency details. Our approach comprises three stages. First, we train a diffusion model on noisy images, using the outputs of a pretrained Blind-Spot Network as conditioning inputs. Next, we introduce a novel stabilized reverse sampling technique, which generates clean images by averaging diffusion sampling outputs initialized with a pair of symmetric noises. Finally, we train a supervised denoising network using noisy images paired with the denoised outputs generated by the diffusion model. Our results demonstrate that DiffDenoise outperforms existing state-of-the-art methods in both synthetic and real-world medical image denoising tasks. We provide both a theoretical foundation and practical insights, demonstrating the method's effectiveness across various medical imaging modalities and anatomical structures.
- Abstract(参考訳): 近年、多くの自己監督的認知的アプローチが提案されている。
しかし、これらの手法は画像が過度に滑らかになる傾向にあり、医療応用に不可欠な微細構造が失われる傾向にある。
本稿では、医用画像に合わせた強力な自己監督型聴診法であるDiffDenoiseを提案する。
私たちのアプローチは3つの段階から成る。
まず,事前学習したBlind-Spot Networkの出力を条件付け入力として,ノイズ画像上の拡散モデルを訓練する。
次に、一対の対称雑音で初期化された拡散サンプリング出力を平均化し、クリーンな画像を生成する、新しい安定化逆サンプリング手法を提案する。
最後に,拡散モデルにより生成されたデノナイズアウトプットと組み合わせたノイズ画像を用いて,教師付きデノナイズネットワークを訓練する。
以上の結果から,DiffDenoiseは,医用画像の合成と実世界の両面で,既存の最先端の手法よりも優れていたことが示唆された。
我々は,様々な医用画像モダリティと解剖学的構造にまたがる手法の有効性を実証し,理論的基礎と実践的知見の両方を提供する。
関連論文リスト
- DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
DiffDoctorは2段階のパイプラインで、画像拡散モデルがより少ないアーティファクトを生成するのを支援する。
我々は100万以上の欠陥のある合成画像のデータセットを収集し、効率的なHuman-in-the-loopアノテーションプロセスを構築した。
次に、学習したアーティファクト検出器が第2段階に関与し、ピクセルレベルのフィードバックを提供することで拡散モデルを最適化する。
論文 参考訳(メタデータ) (2025-01-21T18:56:41Z) - Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume [12.077993066353294]
近距離スライスノイズ2ノイズ(NS-N2N)の自己監督型医用画像復号法を提案する。
NS-N2Nは、画像ボリューム自体の高品質な denoising を実現するために、1つの医療画像から得られるノイズの多い画像ボリュームのみを必要とする。
論文 参考訳(メタデータ) (2024-11-16T16:24:28Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
本稿では,より現実的で空間的変動のある雑音モデルを想定した,微分拡散の新たな定式化について述べる。
実験では,強い拡散モデルベースラインに対するアプローチの利点と,最先端の単一画像復号法に対するアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-28T09:32:00Z) - Diffusion Model for Generative Image Denoising [17.897180118637856]
画像復調のための教師あり学習では、通常、ペアのクリーンな画像とノイズの多い画像を収集し合成し、復調モデルを訓練する。
本稿では,ノイズ画像に条件付けされたクリーン画像の後部分布を推定する問題として,デノナイジングタスクを考察する。
論文 参考訳(メタデータ) (2023-02-05T14:53:07Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
本稿では,スコアベース逆拡散サンプリングに基づく新しい復調法を提案する。
当ネットワークは, 人工膝関節のみを訓練し, 生体内MRIデータにも優れていた。
論文 参考訳(メタデータ) (2022-03-23T10:35:06Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。