Deconver: A Deconvolutional Network for Medical Image Segmentation
- URL: http://arxiv.org/abs/2504.00302v1
- Date: Tue, 01 Apr 2025 00:11:04 GMT
- Title: Deconver: A Deconvolutional Network for Medical Image Segmentation
- Authors: Pooya Ashtari, Shahryar Noei, Fateme Nateghi Haredasht, Jonathan H. Chen, Giuseppe Jurman, Aleksandra Pizurica, Sabine Van Huffel,
- Abstract summary: This paper introduces Deconver, a novel network that integrates traditional deconvolution techniques from image restoration as a core learnable component within a U-shaped architecture.<n>Deconver replaces computationally expensive attention mechanisms with efficient nonnegative deconvolution operations.<n>It achieves state-of-the-art performance in Dice scores and Hausdorff distance while reducing computational costs (FLOPs) by up to 90% compared to leading baselines.
- Score: 40.679550836320786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While convolutional neural networks (CNNs) and vision transformers (ViTs) have advanced medical image segmentation, they face inherent limitations such as local receptive fields in CNNs and high computational complexity in ViTs. This paper introduces Deconver, a novel network that integrates traditional deconvolution techniques from image restoration as a core learnable component within a U-shaped architecture. Deconver replaces computationally expensive attention mechanisms with efficient nonnegative deconvolution (NDC) operations, enabling the restoration of high-frequency details while suppressing artifacts. Key innovations include a backpropagation-friendly NDC layer based on a provably monotonic update rule and a parameter-efficient design. Evaluated across four datasets (ISLES'22, BraTS'23, GlaS, FIVES) covering both 2D and 3D segmentation tasks, Deconver achieves state-of-the-art performance in Dice scores and Hausdorff distance while reducing computational costs (FLOPs) by up to 90% compared to leading baselines. By bridging traditional image restoration with deep learning, this work offers a practical solution for high-precision segmentation in resource-constrained clinical workflows. The project is available at https://github.com/pashtari/deconver.
Related papers
- STA-Unet: Rethink the semantic redundant for Medical Imaging Segmentation [1.9526521731584066]
Super Token Attention (STA) mechanism adapts the concept of superpixels from pixel space to token space, using super tokens as compact visual representations.
In this work, we introduce the STA module in the UNet architecture (STA-UNet), to limit redundancy without losing rich information.
Experimental results on four publicly available datasets demonstrate the superiority of STA-UNet over existing state-of-the-art architectures.
arXiv Detail & Related papers (2024-10-13T07:19:46Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - TEC-Net: Vision Transformer Embrace Convolutional Neural Networks for
Medical Image Segmentation [20.976167468217387]
We propose vision Transformer embrace convolutional neural networks for medical image segmentation (TEC-Net)
Our network has two advantages. First, dynamic deformable convolution (DDConv) is designed in the CNN branch, which not only overcomes the difficulty of adaptive feature extraction using fixed-size convolution kernels, but also solves the defect that different inputs share the same convolution kernel parameters.
Experimental results show that the proposed TEC-Net provides better medical image segmentation results than SOTA methods including CNN and Transformer networks.
arXiv Detail & Related papers (2023-06-07T01:14:16Z) - CiT-Net: Convolutional Neural Networks Hand in Hand with Vision
Transformers for Medical Image Segmentation [10.20771849219059]
We propose a novel hybrid architecture of convolutional neural networks (CNNs) and vision Transformers (CiT-Net) for medical image segmentation.
Our CiT-Net provides better medical image segmentation results than popular SOTA methods.
arXiv Detail & Related papers (2023-06-06T03:22:22Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Invertible Residual Network with Regularization for Effective Medical
Image Segmentation [2.76240219662896]
Invertible neural networks have been applied to significantly reduce activation memory footprint when training neural networks with backpropagation.
We propose two versions of the invertible Residual Network, namely Partially Invertible Residual Network (Partially-InvRes) and Fully Invertible Residual Network (Fully-InvRes)
Our results indicate that by using partially/fully invertible networks as the central workhorse in volumetric segmentation, we not only reduce memory overhead but also achieve compatible segmentation performance compared against the non-invertible 3D Unet.
arXiv Detail & Related papers (2021-03-16T13:19:59Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.