Aligning Diffusion Model with Problem Constraints for Trajectory Optimization
- URL: http://arxiv.org/abs/2504.00342v1
- Date: Tue, 01 Apr 2025 01:46:05 GMT
- Title: Aligning Diffusion Model with Problem Constraints for Trajectory Optimization
- Authors: Anjian Li, Ryne Beeson,
- Abstract summary: We propose a novel approach that aligns diffusion models explicitly with problem-specific constraints.<n>Our approach is well-suited for integration into the Dynamic Data-driven Application Systems (DDDAS) framework.
- Score: 0.6629765271909505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have recently emerged as effective generative frameworks for trajectory optimization, capable of producing high-quality and diverse solutions. However, training these models in a purely data-driven manner without explicit incorporation of constraint information often leads to violations of critical constraints, such as goal-reaching, collision avoidance, and adherence to system dynamics. To address this limitation, we propose a novel approach that aligns diffusion models explicitly with problem-specific constraints, drawing insights from the Dynamic Data-driven Application Systems (DDDAS) framework. Our approach introduces a hybrid loss function that explicitly measures and penalizes constraint violations during training. Furthermore, by statistically analyzing how constraint violations evolve throughout the diffusion steps, we develop a re-weighting strategy that aligns predicted violations to ground truth statistics at each diffusion step. Evaluated on a tabletop manipulation and a two-car reach-avoid problem, our constraint-aligned diffusion model significantly reduces constraint violations compared to traditional diffusion models, while maintaining the quality of trajectory solutions. This approach is well-suited for integration into the DDDAS framework for efficient online trajectory adaptation as new environmental data becomes available.
Related papers
- Stochastic Control for Fine-tuning Diffusion Models: Optimality, Regularity, and Convergence [11.400431211239958]
Diffusion models have emerged as powerful tools for generative modeling.<n>We propose a control framework for fine-tuning diffusion models.<n>We show that PI-FT achieves global convergence at a linear rate.
arXiv Detail & Related papers (2024-12-24T04:55:46Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.<n>This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
We propose a novel bilevel optimization framework for pruned diffusion models.
This framework consolidates the fine-tuning and unlearning processes into a unified phase.
It is compatible with various pruning and concept unlearning methods.
arXiv Detail & Related papers (2024-12-19T19:13:18Z) - Diffusion Predictive Control with Constraints [51.91057765703533]
Diffusion predictive control with constraints (DPCC)<n>An algorithm for diffusion-based control with explicit state and action constraints that can deviate from those in the training data.<n>We show through simulations of a robot manipulator that DPCC outperforms existing methods in satisfying novel test-time constraints while maintaining performance on the learned control task.
arXiv Detail & Related papers (2024-12-12T15:10:22Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Constraint-Aware Diffusion Models for Trajectory Optimization [9.28162057044835]
This paper presents a constraint-aware diffusion model for trajectory optimization.
We introduce a novel hybrid loss function for training that minimizes the constraint violation of diffusion samples.
Our model is demonstrated on tabletop manipulation and two-car reach-avoid problems.
arXiv Detail & Related papers (2024-06-03T04:53:20Z) - Efficient Text-driven Motion Generation via Latent Consistency Training [21.348658259929053]
We propose a motion latent consistency training framework (MLCT) to solve nonlinear reverse diffusion trajectories.<n>By combining these enhancements, we achieve stable and consistency training in non-pixel modality and latent representation spaces.
arXiv Detail & Related papers (2024-05-05T02:11:57Z) - Deep Neural Network for Constraint Acquisition through Tailored Loss
Function [0.0]
The significance of learning constraints from data is underscored by its potential applications in real-world problem-solving.
This work introduces a novel approach grounded in Deep Neural Network (DNN) based on Symbolic Regression.
arXiv Detail & Related papers (2024-03-04T13:47:33Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z) - Erasing Undesirable Influence in Diffusion Models [51.225365010401006]
Diffusion models are highly effective at generating high-quality images but pose risks, such as the unintentional generation of NSFW (not safe for work) content.
In this work, we introduce EraseDiff, an algorithm designed to preserve the utility of the diffusion model on retained data while removing the unwanted information associated with the data to be forgotten.
arXiv Detail & Related papers (2024-01-11T09:30:36Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
We compare two strategies for encoding label constraints in a machine learning pipeline, regularization with constraints and constrained inference.
For regularization, we show that it narrows the generalization gap by precluding models that are inconsistent with the constraints.
For constrained inference, we show that it reduces the population risk by correcting a model's violation, and hence turns the violation into an advantage.
arXiv Detail & Related papers (2023-07-08T03:39:22Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.