Erasing Undesirable Influence in Diffusion Models
- URL: http://arxiv.org/abs/2401.05779v4
- Date: Wed, 20 Nov 2024 09:31:15 GMT
- Title: Erasing Undesirable Influence in Diffusion Models
- Authors: Jing Wu, Trung Le, Munawar Hayat, Mehrtash Harandi,
- Abstract summary: Diffusion models are highly effective at generating high-quality images but pose risks, such as the unintentional generation of NSFW (not safe for work) content.
In this work, we introduce EraseDiff, an algorithm designed to preserve the utility of the diffusion model on retained data while removing the unwanted information associated with the data to be forgotten.
- Score: 51.225365010401006
- License:
- Abstract: Diffusion models are highly effective at generating high-quality images but pose risks, such as the unintentional generation of NSFW (not safe for work) content. Although various techniques have been proposed to mitigate unwanted influences in diffusion models while preserving overall performance, achieving a balance between these goals remains challenging. In this work, we introduce EraseDiff, an algorithm designed to preserve the utility of the diffusion model on retained data while removing the unwanted information associated with the data to be forgotten. Our approach formulates this task as a constrained optimization problem using the value function, resulting in a natural first-order algorithm for solving the optimization problem. By altering the generative process to deviate away from the ground-truth denoising trajectory, we update parameters for preservation while controlling constraint reduction to ensure effective erasure, striking an optimal trade-off. Extensive experiments and thorough comparisons with state-of-the-art algorithms demonstrate that EraseDiff effectively preserves the model's utility, efficacy, and efficiency.
Related papers
- Diffusion Models as Optimizers for Efficient Planning in Offline RL [47.0835433289033]
Diffusion models have shown strong competitiveness in offline reinforcement learning tasks.
We propose a faster autoregressive model to handle the generation of feasible trajectories.
This allows us to achieve more efficient planning without sacrificing capability.
arXiv Detail & Related papers (2024-07-23T03:00:01Z) - Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems [26.134240531687453]
The ProjDiff algorithm harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework.
Experiments on the image restoration tasks and source separation and partial generation tasks demonstrate that ProjDiff exhibits superior performance across various linear and nonlinear inverse problems.
arXiv Detail & Related papers (2024-06-11T05:35:18Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - The Missing U for Efficient Diffusion Models [3.712196074875643]
Diffusion Probabilistic Models yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design.
Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs.
We introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models.
arXiv Detail & Related papers (2023-10-31T00:12:14Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
We propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation.
This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
arXiv Detail & Related papers (2023-06-02T20:19:19Z) - dugMatting: Decomposed-Uncertainty-Guided Matting [83.71273621169404]
We propose a decomposed-uncertainty-guided matting algorithm, which explores the explicitly decomposed uncertainties to efficiently and effectively improve the results.
The proposed matting framework relieves the requirement for users to determine the interaction areas by using simple and efficient labeling.
arXiv Detail & Related papers (2023-06-02T11:19:50Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.