Hierarchical Flow Diffusion for Efficient Frame Interpolation
- URL: http://arxiv.org/abs/2504.00380v1
- Date: Tue, 01 Apr 2025 02:50:00 GMT
- Title: Hierarchical Flow Diffusion for Efficient Frame Interpolation
- Authors: Yang Hai, Guo Wang, Tan Su, Wenjie Jiang, Yinlin Hu,
- Abstract summary: We propose to model bilateral optical flow explicitly by hierarchical diffusion models.<n>We then use a flow-guided images synthesizer to produce the final result.<n>Our method achieves state of the art in accuracy, and 10+ times faster than other diffusion-based methods.
- Score: 7.471940227504413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most recent diffusion-based methods still show a large gap compared to non-diffusion methods for video frame interpolation, in both accuracy and efficiency. Most of them formulate the problem as a denoising procedure in latent space directly, which is less effective caused by the large latent space. We propose to model bilateral optical flow explicitly by hierarchical diffusion models, which has much smaller search space in the denoising procedure. Based on the flow diffusion model, we then use a flow-guided images synthesizer to produce the final result. We train the flow diffusion model and the image synthesizer end to end. Our method achieves state of the art in accuracy, and 10+ times faster than other diffusion-based methods. The project page is at: https://hfd-interpolation.github.io.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Optimizing for the Shortest Path in Denoising Diffusion Model [8.884907787678731]
Shortest Path Diffusion Model (ShortDF) treats the denoising process as a shortest-path problem aimed at minimizing reconstruction error.<n>Experiments on multiple standard benchmarks demonstrate that ShortDF significantly reduces diffusion time (or steps)<n>This work, we suppose, paves the way for interactive diffusion-based applications and establishes a foundation for rapid data generation.
arXiv Detail & Related papers (2025-03-05T08:47:36Z) - Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment [56.609042046176555]
suboptimal noise-data mapping leads to slow training of diffusion models.
Drawing inspiration from the immiscibility phenomenon in physics, we propose Immiscible Diffusion.
Our approach is remarkably simple, requiring only one line of code to restrict the diffuse-able area for each image.
arXiv Detail & Related papers (2024-06-18T06:20:42Z) - Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models [82.8261101680427]
Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image.
This property proves beneficial in downstream tasks, including image inversion, inversion, and editing.
We propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth.
arXiv Detail & Related papers (2023-12-07T16:26:23Z) - Prompt-tuning latent diffusion models for inverse problems [72.13952857287794]
We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors.
Our method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.
arXiv Detail & Related papers (2023-10-02T11:31:48Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
We show that current diffusion models actually have an expressive bottleneck in backward denoising.
We introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising.
arXiv Detail & Related papers (2023-09-25T12:03:32Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Progressive Deblurring of Diffusion Models for Coarse-to-Fine Image
Synthesis [39.671396431940224]
diffusion models have shown remarkable results in image synthesis by gradually removing noise and amplifying signals.
We propose a novel generative process that synthesizes images in a coarse-to-fine manner.
Experiments show that the proposed model outperforms the previous method in FID on LSUN bedroom and church datasets.
arXiv Detail & Related papers (2022-07-16T15:00:21Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.