Deep learning for state estimation of commercial sodium-ion batteries using partial charging profiles: validation with a multi-temperature ageing dataset
- URL: http://arxiv.org/abs/2504.00393v1
- Date: Tue, 01 Apr 2025 03:28:13 GMT
- Title: Deep learning for state estimation of commercial sodium-ion batteries using partial charging profiles: validation with a multi-temperature ageing dataset
- Authors: Jiapeng Liu, Lunte Li, Jing Xiang, Laiyong Xie, Yuhao Wang, Francesco Ciucci,
- Abstract summary: This study experimentally collected 53 single cells at four temperatures, along with two battery modules in the lab.<n>We were able to predict the SOC, capacity, and SOH simultaneously using a partial charging profile.<n>Our model demonstrated an $R2$ accuracy of 0.998 for SOC and 0.997 for SOH across single cells at various temperatures.
- Score: 3.942761758475083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting the state of health for sodium-ion batteries is crucial for managing battery modules, playing a vital role in ensuring operational safety. However, highly accurate models available thus far are rare due to a lack of aging data for sodium-ion batteries. In this study, we experimentally collected 53 single cells at four temperatures (0, 25, 35, and 45 {\deg}C), along with two battery modules in the lab. By utilizing the charging profiles, we were able to predict the SOC, capacity, and SOH simultaneously. This was achieved by designing a new framework that integrates the neural ordinary differential equation and 2D convolutional neural networks, using the partial charging profile as input. The charging profile is partitioned into segments, and each segment is fed into the network to output the SOC. For capacity and SOH prediction, we first aggregated the extracted features corresponding to segments from one cycle, after which an embedding block for temperature is concatenated for the final prediction. This novel approach eliminates the issue of multiple outputs for a single target. Our model demonstrated an $R^2$ accuracy of 0.998 for SOC and 0.997 for SOH across single cells at various temperatures. Furthermore, the trained model can be employed to predict single cells at temperatures outside the training set and battery modules with different capacity and current levels. The results presented here highlight the high accuracy of our model and its capability to predict multiple targets simultaneously using a partial charging profile.
Related papers
- Learning the P2D Model for Lithium-Ion Batteries with SOH Detection [0.0]
We show that a Convolutional Neural Network (CNN) surrogate model fit to accurately simulated data from a class of random driving cycles.<n>We demonstrate that a CNN is an ideal choice for accurately capturing Lithium ion concentration profiles.
arXiv Detail & Related papers (2025-02-19T23:17:30Z) - COEFF-KANs: A Paradigm to Address the Electrolyte Field with KANs [5.759388420139191]
We propose a novel method to automatically predict Coulombic Efficiency (CE) based on the composition of liquid electrolytes.
We input the obtained electrolyte features into a Multi-layer Perceptron or Kolmogorov-Arnold Network to predict CE.
Experimental results on a real-world dataset demonstrate that our method achieves SOTA for predicting CE compared to all baselines.
arXiv Detail & Related papers (2024-07-24T14:45:25Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
Batteries are an essential component in a deeply decarbonized future. Understanding battery performance and "useful life" as a function of design and use is of paramount importance.
We present a first step in that direction via deep transformer networks for the prediction of 28 battery state of health descriptors.
arXiv Detail & Related papers (2023-09-18T15:04:40Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - LiFe-net: Data-driven Modelling of Time-dependent Temperatures and
Charging Statistics Of Tesla's LiFePo4 EV Battery [0.0]
Extreme temperatures in the battery packs can affect their longevity and power output.
It is difficult to acquire data measurements from within the battery cell.
We propose a data-driven surrogate model (LiFe-net) that uses readily accessible driving diagnostics for battery temperature estimation.
arXiv Detail & Related papers (2022-12-16T10:59:03Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Comparing seven methods for state-of-health time series prediction for
the lithium-ion battery packs of forklifts [1.1470070927586016]
This paper demonstrates the capabilities of gradient boosting regression for predicting the state-of-health timeseries.
We are in possession of a unique data set of 45 lithium-ion battery packs with large variation in the data.
arXiv Detail & Related papers (2021-07-06T10:52:56Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.