Can LLMs Assist Computer Education? an Empirical Case Study of DeepSeek
- URL: http://arxiv.org/abs/2504.00421v1
- Date: Tue, 01 Apr 2025 04:58:16 GMT
- Title: Can LLMs Assist Computer Education? an Empirical Case Study of DeepSeek
- Authors: Dongfu Xiao, Chen Gao, Zhengquan Luo, Chi Liu, Sheng Shen,
- Abstract summary: This study employs both simulation questions and real-world inquiries concerning computer network security posed by Chinese network engineers.<n>The findings demonstrate that the model performs consistently, regardless of whether prompts include a role definition or not.<n>Although DeepSeek-V3 offers considerable practical value for network security education, challenges remain in its capability to process multimodal data.
- Score: 38.30073108450149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents an empirical case study to assess the efficacy and reliability of DeepSeek-V3, an emerging large language model, within the context of computer education. The evaluation employs both CCNA simulation questions and real-world inquiries concerning computer network security posed by Chinese network engineers. To ensure a thorough evaluation, diverse dimensions are considered, encompassing role dependency, cross-linguistic proficiency, and answer reproducibility, accompanied by statistical analysis. The findings demonstrate that the model performs consistently, regardless of whether prompts include a role definition or not. In addition, its adaptability across languages is confirmed by maintaining stable accuracy in both original and translated datasets. A distinct contrast emerges between its performance on lower-order factual recall tasks and higher-order reasoning exercises, which underscores its strengths in retrieving information and its limitations in complex analytical tasks. Although DeepSeek-V3 offers considerable practical value for network security education, challenges remain in its capability to process multimodal data and address highly intricate topics. These results provide valuable insights for future refinement of large language models in specialized professional environments.
Related papers
- RDF-Based Structured Quality Assessment Representation of Multilingual LLM Evaluations [0.7666363671957646]
Large Language Models (LLMs) increasingly serve as knowledge interfaces, yet systematically assessing their reliability with conflicting information remains difficult.
We propose an RDF-based framework to assess multilingual LLM quality, focusing on knowledge conflicts.
arXiv Detail & Related papers (2025-04-30T13:06:40Z) - AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks [13.082370325093242]
We introduce AttackSeqBench, a benchmark to evaluate Large Language Models' (LLMs) capability to understand and reason attack sequences in Cyber Threat Intelligence (CTI) reports.
Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior.
We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks.
arXiv Detail & Related papers (2025-03-05T04:25:21Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI)<n>This paper explores potential areas where statisticians can make important contributions to the development of LLMs.<n>We focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation.
arXiv Detail & Related papers (2025-02-25T03:40:36Z) - Optimal Query Allocation in Extractive QA with LLMs: A Learning-to-Defer Framework with Theoretical Guarantees [3.4289478404209826]
Large Language Models excel in generative tasks but exhibit inefficiencies in structured text selection.<n>We propose a Learning-to-Defer framework that allocates queries to specialized experts, ensuring high-confidence predictions.
arXiv Detail & Related papers (2024-10-21T08:21:00Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
This study investigates how Large Language Models (LLMs) leverage source and reference data in machine translation evaluation task.
We find that reference information significantly enhances the evaluation accuracy, while surprisingly, source information sometimes is counterproductive.
arXiv Detail & Related papers (2024-01-12T13:23:21Z) - Data Distribution Bottlenecks in Grounding Language Models to Knowledge
Bases [9.610231090476857]
Language models (LMs) have already demonstrated remarkable abilities in understanding and generating both natural and formal language.
This paper is an experimental investigation aimed at uncovering the challenges that LMs encounter when tasked with knowledge base question answering (KBQA)
Our experiments reveal that even when employed with our proposed data augmentation techniques, advanced small and large language models exhibit poor performance in various dimensions.
arXiv Detail & Related papers (2023-09-15T12:06:45Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.