Rethinking Multilingual Vision-Language Translation: Dataset, Evaluation, and Adaptation
- URL: http://arxiv.org/abs/2506.11820v1
- Date: Fri, 13 Jun 2025 14:23:38 GMT
- Title: Rethinking Multilingual Vision-Language Translation: Dataset, Evaluation, and Adaptation
- Authors: Xintong Wang, Jingheng Pan, Yixiao Liu, Xiaohu Zhao, Chenyang Lyu, Minghao Wu, Chris Biemann, Longyue Wang, Linlong Xu, Weihua Luo, Kaifu Zhang,
- Abstract summary: Vision-Language Translation is a challenging task that requires accurately recognizing multilingual text embedded in images.<n>We present a comprehensive study of VLT from three key perspectives: data quality, model architecture, and evaluation metrics.
- Score: 45.551223552275424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Translation (VLT) is a challenging task that requires accurately recognizing multilingual text embedded in images and translating it into the target language with the support of visual context. While recent Large Vision-Language Models (LVLMs) have demonstrated strong multilingual and visual understanding capabilities, there is a lack of systematic evaluation and understanding of their performance on VLT. In this work, we present a comprehensive study of VLT from three key perspectives: data quality, model architecture, and evaluation metrics. (1) We identify critical limitations in existing datasets, particularly in semantic and cultural fidelity, and introduce AibTrans -- a multilingual, parallel, human-verified dataset with OCR-corrected annotations. (2) We benchmark 11 commercial LVLMs/LLMs and 6 state-of-the-art open-source models across end-to-end and cascaded architectures, revealing their OCR dependency and contrasting generation versus reasoning behaviors. (3) We propose Density-Aware Evaluation to address metric reliability issues under varying contextual complexity, introducing the DA Score as a more robust measure of translation quality. Building upon these findings, we establish a new evaluation benchmark for VLT. Notably, we observe that fine-tuning LVLMs on high-resource language pairs degrades cross-lingual performance, and we propose a balanced multilingual fine-tuning strategy that effectively adapts LVLMs to VLT without sacrificing their generalization ability.
Related papers
- Multilingual Self-Taught Faithfulness Evaluators [11.200203292660758]
Self-Taught Evaluators for Multilingual Faithfulness is a framework that learns exclusively from synthetic multilingual summarization data.<n>Our framework shows improvements over existing baselines, including state-of-the-art English evaluators and machine translation-based approaches.
arXiv Detail & Related papers (2025-07-28T12:01:59Z) - A Benchmark for Multi-Lingual Vision-Language Learning in Remote Sensing Image Captioning [27.350370419751385]
Remote Sensing Image Captioning (RSIC) is a cross-modal field bridging vision and language, aimed at automatically generating natural language descriptions of features and scenes in remote sensing imagery.<n>Two critical challenges persist: the scarcity of non-English descriptive datasets and the lack of multilingual capability evaluation for models.<n>This paper introduces and analyzes BRSIC, a comprehensive bilingual dataset that enriches three established English RSIC datasets with Chinese descriptions, encompassing 13,634 images paired with 68,170 bilingual captions.
arXiv Detail & Related papers (2025-03-06T16:31:34Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.<n>P-MMEval delivers consistent language coverage across various datasets and provides parallel samples.<n>We conduct extensive experiments on representative multilingual model series to compare performances across models and tasks.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)<n>The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.<n>The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - VisEval: A Benchmark for Data Visualization in the Era of Large Language Models [12.077276008688065]
Recent advancements in pre-trained large language models (LLMs) are opening new avenues for generating visualizations from natural language.
In this paper, we propose a new NL2VIS benchmark called VisEval.
This dataset includes 2,524 representative queries covering 146 databases, paired with accurately labeled ground truths.
arXiv Detail & Related papers (2024-07-01T05:35:30Z) - DeepSeek-VL: Towards Real-World Vision-Language Understanding [24.57011093316788]
We present DeepSeek-VL, an open-source Vision-Language (VL) Model for real-world vision and language understanding applications.
Our approach is structured around three key dimensions: We strive to ensure our data is diverse, scalable, and extensively covers real-world scenarios.
We create a use case taxonomy from real user scenarios and construct an instruction tuning dataset.
arXiv Detail & Related papers (2024-03-08T18:46:00Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training [84.23022072347821]
We propose a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs.
Experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-05-13T14:41:05Z) - Teaching Structured Vision&Language Concepts to Vision&Language Models [46.344585368641006]
We introduce the collective notion of Structured Vision&Language Concepts (SVLC)
SVLC includes object attributes, relations, and states which are present in the text and visible in the image.
We propose a more elegant data-driven approach for enhancing VL models' understanding of SVLCs.
arXiv Detail & Related papers (2022-11-21T18:54:10Z) - XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems
to Improve Language Understanding [73.24847320536813]
This study explores distilling visual information from pretrained multimodal transformers to pretrained language encoders.
Our framework is inspired by cross-modal encoders' success in visual-language tasks while we alter the learning objective to cater to the language-heavy characteristics of NLU.
arXiv Detail & Related papers (2022-04-15T03:44:00Z) - Evaluating Multilingual Text Encoders for Unsupervised Cross-Lingual
Retrieval [51.60862829942932]
We present a systematic empirical study focused on the suitability of the state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks.
For sentence-level CLIR, we demonstrate that state-of-the-art performance can be achieved.
However, the peak performance is not met using the general-purpose multilingual text encoders off-the-shelf', but rather relying on their variants that have been further specialized for sentence understanding tasks.
arXiv Detail & Related papers (2021-01-21T00:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.