Hawkeye:Efficient Reasoning with Model Collaboration
- URL: http://arxiv.org/abs/2504.00424v1
- Date: Tue, 01 Apr 2025 05:09:04 GMT
- Title: Hawkeye:Efficient Reasoning with Model Collaboration
- Authors: Jianshu She, Zhuohao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, Qirong Ho,
- Abstract summary: Chain-of-Thought (CoT) reasoning has demonstrated remarkable effectiveness in enhancing the reasoning abilities of large language models (LLMs)<n>Most CoT tokens are unnecessary, and retaining only a small portion of them is sufficient for producing high-quality responses.<n>We propose HAWKEYE, a novel post-training and inference framework where a large model produces concise CoT instructions to guide a smaller model in response generation.
- Score: 7.26791045376255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) reasoning has demonstrated remarkable effectiveness in enhancing the reasoning abilities of large language models (LLMs). However, its efficiency remains a challenge due to the generation of excessive intermediate reasoning tokens, which introduce semantic redundancy and overly detailed reasoning steps. Moreover, computational expense and latency are significant concerns, as the cost scales with the number of output tokens, including those intermediate steps. In this work, we observe that most CoT tokens are unnecessary, and retaining only a small portion of them is sufficient for producing high-quality responses. Inspired by this, we propose HAWKEYE, a novel post-training and inference framework where a large model produces concise CoT instructions to guide a smaller model in response generation. HAWKEYE quantifies redundancy in CoT reasoning and distills high-density information via reinforcement learning. By leveraging these concise CoTs, HAWKEYE is able to expand responses while reducing token usage and computational cost significantly. Our evaluation shows that HAWKEYE can achieve comparable response quality using only 35% of the full CoTs, while improving clarity, coherence, and conciseness by approximately 10%. Furthermore, HAWKEYE can accelerate end-to-end reasoning by up to 3.4x on complex math tasks while reducing inference cost by up to 60%. HAWKEYE will be open-sourced and the models will be available soon.
Related papers
- Efficient Reasoning Models: A Survey [52.96232442322824]
This survey aims to provide a comprehensive overview of recent advances in efficient reasoning.
It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities; and (3) faster.
arXiv Detail & Related papers (2025-04-15T06:28:00Z) - Attention Reveals More Than Tokens: Training-Free Long-Context Reasoning with Attention-guided Retrieval [33.84832445715185]
Large Language Models (LLMs) often exhibit substantially shorter effective context lengths than their claimed capacities.
We propose a novel training-free algorithm, Attrieval, which leverages attention weights to retrieve relevant facts from the long context.
Our results demonstrate that Attrieval enhances long-context reasoning capability notably on both synthetic and real-world QA datasets.
arXiv Detail & Related papers (2025-03-12T20:34:14Z) - Self-Training Elicits Concise Reasoning in Large Language Models [23.475414693530965]
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens.
We propose simple fine-tuning methods which leverage self-generated concise reasoning paths.
Our method achieves a 30% reduction in output tokens, across five model families on GSM8K and MATH, while maintaining average accuracy.
arXiv Detail & Related papers (2025-02-27T14:14:50Z) - Chain of Draft: Thinking Faster by Writing Less [37.492654173517046]
Chain of Draft (CoD) is a novel paradigm inspired by human cognitive processes.<n>CoD generates minimalistic yet informative intermediate reasoning outputs while solving tasks.
arXiv Detail & Related papers (2025-02-25T19:36:06Z) - Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)<n>We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT)<n>We find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA)<n>With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks.
arXiv Detail & Related papers (2025-02-11T08:48:48Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)<n>However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?<n>In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - Efficient Reasoning with Hidden Thinking [48.96945580741641]
Chain-of-Thought (CoT) reasoning has become a powerful framework for improving complex problem-solving capabilities.<n>We propose $textbfHeima$ (as hidden llama), an efficient reasoning framework that leverages reasoning CoTs at hidden latent space.<n>Heima model achieves higher generation efficiency while maintaining or even better zero-shot task accuracy.
arXiv Detail & Related papers (2025-01-31T15:10:29Z) - C3oT: Generating Shorter Chain-of-Thought without Compromising Effectiveness [18.073777359647515]
Chain-of-Thought (CoT) before deriving the answer can improve the reasoning capabilities of large language models (LLMs)<n>However, the length of the generated CoT is much longer than the desired final answer, which results in additional decoding costs.<n>This paper presents a CoT compression framework that involves a compressor to compress an original longer CoT into a shorter CoT.
arXiv Detail & Related papers (2024-12-16T11:12:45Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models.
We investigate the correlation between the effectiveness of CoT and the length of reasoning steps in prompts.
arXiv Detail & Related papers (2024-01-10T04:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.