論文の概要: LLM-Assisted Proactive Threat Intelligence for Automated Reasoning
- arxiv url: http://arxiv.org/abs/2504.00428v1
- Date: Tue, 01 Apr 2025 05:19:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:08.940122
- Title: LLM-Assisted Proactive Threat Intelligence for Automated Reasoning
- Title(参考訳): 自動推論のためのLDM支援能動脅威知能
- Authors: Shuva Paul, Farhad Alemi, Richard Macwan,
- Abstract要約: 本研究は、リアルタイムサイバーセキュリティ脅威の検出と応答を強化する新しいアプローチを提案する。
我々は,大規模言語モデル (LLM) とレトリーバル拡張生成システム (RAG) を連続的な脅威知能フィードに統合する。
- 参考スコア(独自算出の注目度): 2.0427650128177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successful defense against dynamically evolving cyber threats requires advanced and sophisticated techniques. This research presents a novel approach to enhance real-time cybersecurity threat detection and response by integrating large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems with continuous threat intelligence feeds. Leveraging recent advancements in LLMs, specifically GPT-4o, and the innovative application of RAG techniques, our approach addresses the limitations of traditional static threat analysis by incorporating dynamic, real-time data sources. We leveraged RAG to get the latest information in real-time for threat intelligence, which is not possible in the existing GPT-4o model. We employ the Patrowl framework to automate the retrieval of diverse cybersecurity threat intelligence feeds, including Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), Exploit Prediction Scoring System (EPSS), and Known Exploited Vulnerabilities (KEV) databases, and integrate these with the all-mpnet-base-v2 model for high-dimensional vector embeddings, stored and queried in Milvus. We demonstrate our system's efficacy through a series of case studies, revealing significant improvements in addressing recently disclosed vulnerabilities, KEVs, and high-EPSS-score CVEs compared to the baseline GPT-4o. This work not only advances the role of LLMs in cybersecurity but also establishes a robust foundation for the development of automated intelligent cyberthreat information management systems, addressing crucial gaps in current cybersecurity practices.
- Abstract(参考訳): 動的に進化するサイバー脅威に対する防御に成功するには、高度で高度な技術が必要である。
本研究では,大規模言語モデル (LLM) とレトリーバル拡張生成システム (RAG) を連続的脅威知能フィードに統合することにより,リアルタイムサイバーセキュリティ脅威の検出と応答を向上させる新しいアプローチを提案する。
近年のLCM,特にGPT-4oの進歩とRAG技術の革新的応用を活用し,動的リアルタイムデータソースを取り入れた従来の静的脅威解析の限界に対処する。
我々はRAGを利用して、既存のGPT-4oモデルでは不可能な脅威インテリジェンスのために、最新の情報をリアルタイムに取得した。
私たちはPatrowlフレームワークを使用して、CVE(Common Vulnerabilities and Exposures)、CWE(Common Weakness Enumeration)、EPSS(Exploit Prediction Scoring System)、Known Exploited Vulnerabilities(KEV)データベースなどの多様なサイバーセキュリティ脅威情報フィードの検索を自動化する。
一連のケーススタディを通じて本システムの有効性を実証し,最近公表された脆弱性,KEV,高EPSSスコアCVEへの対処において,ベースラインのGPT-4oと比較して顕著な改善が示された。
この研究は、サイバーセキュリティにおけるLLMの役割を前進させるだけでなく、自動化されたインテリジェントなサイバー脅威情報管理システムの開発のための堅牢な基盤を確立し、現在のサイバーセキュリティプラクティスにおける重要なギャップに対処する。
関連論文リスト
- MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN [42.74889568823579]
我々は車載ネットワーク(IVN)に対する新たな時間的脅威モデルを特定する。
これらの攻撃は、タイムエキサイティングな効果を示す悪意のあるメッセージを注入し、徐々にネットワークトラフィックを操作して車両の動作を妨害し、安全クリティカルな機能を損なう。
時間的脅威を検出するため,MDHP-Netを導入し,Multi-Dimentional Hawkes Process(MDHP)と時間的・メッセージ的特徴抽出構造を利用した。
論文 参考訳(メタデータ) (2025-04-16T08:41:24Z) - Frontier AI's Impact on the Cybersecurity Landscape [42.771086928042315]
本稿では,フロンティアAIがサイバーセキュリティに与える影響を詳細に分析する。
まず、サイバーセキュリティにおけるフロンティアAIの限界リスクを定義し、分類する。
そして、サイバーセキュリティにおけるフロンティアAIの現在と将来の影響を体系的に分析する。
論文 参考訳(メタデータ) (2025-04-07T18:25:18Z) - Cyber Defense Reinvented: Large Language Models as Threat Intelligence Copilots [37.078145773419564]
CYLENSは、大規模言語モデル(LLM)を利用したサイバー脅威情報通信システムである。
CYLENSは、脅威管理ライフサイクル全体を通じてセキュリティ専門家を支援するように設計されている。
脅威帰属、文脈化、検出、相関、優先順位付け、修復をサポートする。
論文 参考訳(メタデータ) (2025-02-28T07:16:09Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [68.36528819227641]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する2つの未目標攻撃目標と,ロボット軌道を操作する目標攻撃目標を導入する。
我々は、カメラの視野に小さなカラフルなパッチを配置し、デジタルと物理の両方の環境で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN [42.74889568823579]
我々は車載ネットワーク(IVN)に対する新たな時間的脅威モデルを特定する。
これらの攻撃は、タイムエキサイティングな効果を示す悪意のあるメッセージを注入し、徐々にネットワークトラフィックを操作して車両の動作を妨害し、安全クリティカルな機能を損なう。
時間的脅威を検出するため,MDHP-Netを導入し,Multi-Dimentional Hawkes Process(MDHP)と時間的・メッセージ的特徴抽出構造を利用した。
論文 参考訳(メタデータ) (2024-11-15T15:05:01Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
大規模言語モデル(LLM)は、高度な自然言語処理機能を提供することによって、様々なアプリケーションに革命をもたらした。
本稿では,LSMを利用したアプリケーションに適した脅威モデリングとリスク分析について検討する。
論文 参考訳(メタデータ) (2024-06-16T16:43:58Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Generative AI in Cybersecurity [0.0]
生成人工知能(GAI)は、データ分析、パターン認識、意思決定プロセスの分野を変える上で重要な役割を担っている。
GAIは急速に進歩し、サイバーセキュリティプロトコルや規制フレームワークの現在のペースを超越している。
この研究は、マルウェア生成におけるGAIの高度な利用に対抗するために、より複雑な防衛戦略を積極的に特定し、開発する組織にとって重要な必要性を強調している。
論文 参考訳(メタデータ) (2024-05-02T19:03:11Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
本稿では、Generative AI(GenAI)の現状について概観する。
暴行、脱獄、即時注射と逆心理学の応用をカバーしている。
また、サイバー犯罪におけるGenAIのさまざまな応用として、自動ハッキング、フィッシングメール、ソーシャルエンジニアリング、リバース暗号、攻撃ペイロードの作成、マルウェアの作成などを提供している。
論文 参考訳(メタデータ) (2024-03-13T17:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。