Efficient Near-Optimal Algorithm for Online Shortest Paths in Directed Acyclic Graphs with Bandit Feedback Against Adaptive Adversaries
- URL: http://arxiv.org/abs/2504.00461v1
- Date: Tue, 01 Apr 2025 06:35:42 GMT
- Title: Efficient Near-Optimal Algorithm for Online Shortest Paths in Directed Acyclic Graphs with Bandit Feedback Against Adaptive Adversaries
- Authors: Arnab Maiti, Zhiyuan Fan, Kevin Jamieson, Lillian J. Ratliff, Gabriele Farina,
- Abstract summary: We study the online shortest path problem in directed acyclic graphs (DAGs) under bandit feedback against an adaptive adversary.<n>We propose the first computationally efficient algorithm to achieve a near-minimax optimal regret bound of $tilde O(sqrt|E|Tlog |X|)$ with high probability against any adaptive adversary.
- Score: 34.38978643261337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the online shortest path problem in directed acyclic graphs (DAGs) under bandit feedback against an adaptive adversary. Given a DAG $G = (V, E)$ with a source node $v_{\mathsf{s}}$ and a sink node $v_{\mathsf{t}}$, let $X \subseteq \{0,1\}^{|E|}$ denote the set of all paths from $v_{\mathsf{s}}$ to $v_{\mathsf{t}}$. At each round $t$, we select a path $\mathbf{x}_t \in X$ and receive bandit feedback on our loss $\langle \mathbf{x}_t, \mathbf{y}_t \rangle \in [-1,1]$, where $\mathbf{y}_t$ is an adversarially chosen loss vector. Our goal is to minimize regret with respect to the best path in hindsight over $T$ rounds. We propose the first computationally efficient algorithm to achieve a near-minimax optimal regret bound of $\tilde O(\sqrt{|E|T\log |X|})$ with high probability against any adaptive adversary, where $\tilde O(\cdot)$ hides logarithmic factors in the number of edges $|E|$. Our algorithm leverages a novel loss estimator and a centroid-based decomposition in a nontrivial manner to attain this regret bound. As an application, we show that our algorithm for DAGs provides state-of-the-art efficient algorithms for $m$-sets, extensive-form games, the Colonel Blotto game, shortest walks in directed graphs, hypercubes, and multi-task multi-armed bandits, achieving improved high-probability regret guarantees in all these settings.
Related papers
- Batched Stochastic Bandit for Nondegenerate Functions [8.015503209312786]
This paper studies batched bandit learning problems for nondegenerate functions.
We introduce an algorithm that solves the batched bandit problem for nondegenerate functions near-optimally.
arXiv Detail & Related papers (2024-05-09T12:50:16Z) - A/B Testing and Best-arm Identification for Linear Bandits with
Robustness to Non-stationarity [28.068960555415014]
We investigate the fixed-budget best-arm identification problem for linear bandits in a potentially non-stationary environment.
An algorithm will aim to correctly identify the best arm $x* := argmax_xinmathcalXxtopsum_t=1Ttheta_t$ with probability as high as possible.
arXiv Detail & Related papers (2023-07-27T19:03:36Z) - Corralling a Larger Band of Bandits: A Case Study on Switching Regret
for Linear Bandits [99.86860277006318]
We consider the problem of combining and learning over a set of adversarial algorithms with the goal of adaptively tracking the best one on the fly.
The CORRAL of Agarwal et al. achieves this goal with a regret overhead of order $widetildeO(sqrtd S T)$ where $M$ is the number of base algorithms and $T$ is the time horizon.
Motivated by this issue, we propose a new recipe to corral a larger band of bandit algorithms whose regret overhead has only emphlogarithmic dependence on $M$ as long
arXiv Detail & Related papers (2022-02-12T21:55:44Z) - Contextual Recommendations and Low-Regret Cutting-Plane Algorithms [49.91214213074933]
We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems.
We design novel cutting-plane algorithms with low "regret" -- the total distance between the true point $w*$ and the hyperplanes the separation oracle returns.
arXiv Detail & Related papers (2021-06-09T05:39:05Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Impact of Representation Learning in Linear Bandits [83.17684841392754]
We study how representation learning can improve the efficiency of bandit problems.
We present a new algorithm which achieves $widetildeO(TsqrtkN + sqrtdkNT)$ regret, where $N$ is the number of rounds we play for each bandit.
arXiv Detail & Related papers (2020-10-13T16:35:30Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
We study learning in contextual bandits with the help of loss predictors.
We show that the optimal regret is $mathcalO(minsqrtT, sqrtmathcalETfrac13)$ when $mathcalE$ is known.
arXiv Detail & Related papers (2020-03-04T07:36:38Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.