論文の概要: Bayesian Network Structural Consensus via Greedy Min-Cut Analysis
- arxiv url: http://arxiv.org/abs/2504.00467v2
- Date: Mon, 10 Nov 2025 11:53:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 19:11:14.131521
- Title: Bayesian Network Structural Consensus via Greedy Min-Cut Analysis
- Title(参考訳): Greedy Min-Cut Analysisによるベイズネットワーク構造合意
- Authors: Pablo Torrijos, José M. Puerta, Juan A. Aledo, José A. Gámez,
- Abstract要約: Min-Cut Bayesian Network Consensus (MCBNC)はBayesian Networks (BN)の構造的コンセンサスのための欲求的手法である
MCBNCは、ミンカット分析に基づく構造スコアを用いて、初期非制限核融合から弱いエッジを抽出する。
この方法はスケーラブルで、データに依存しず、分散またはフェデレートされたシナリオに適しています。
- 参考スコア(独自算出の注目度): 3.5232028627328895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the Min-Cut Bayesian Network Consensus (MCBNC) algorithm, a greedy method for structural consensus of Bayesian Networks (BNs), with applications in federated learning and model aggregation. MCBNC prunes weak edges from an initial unrestricted fusion using a structural score based on min-cut analysis, integrated into a modified Backward Equivalence Search (BES) phase of the Greedy Equivalence Search (GES) algorithm. The score quantifies edge support across input networks and is computed using max-flow. Unlike methods with fixed treewidth bounds, MCBNC introduces a pruning threshold $\theta$ that can be selected post hoc using only structural information. Experiments on real-world BNs show that MCBNC yields sparser, more accurate consensus structures than both canonical fusion and the input networks. The method is scalable, data-agnostic, and well-suited for distributed or federated scenarios.
- Abstract(参考訳): 本稿では,Min-Cut Bayesian Network Consensus (MCBNC)アルゴリズムを提案する。
MCBNCは、Min-cut分析に基づく構造スコアを用いて、初期非制限核融合から弱いエッジを抽出し、Greedy Equivalence Search (GES)アルゴリズムの修正された後方等価探索(BES)フェーズに統合する。
スコアは入力ネットワーク間のエッジサポートを定量化し、最大フローを用いて計算される。
固定木幅境界を持つメソッドとは異なり、MCBNCは構造情報のみを使用してポストホックを選択することができるプルーニングしきい値$\theta$を導入している。
実世界のBNの実験では、CBNCは標準核融合と入力ネットワークの両方よりもスペーサーで正確なコンセンサス構造をもたらす。
この方法はスケーラブルで、データに依存しず、分散またはフェデレートされたシナリオに適しています。
関連論文リスト
- SGLP: A Similarity Guided Fast Layer Partition Pruning for Compressing Large Deep Models [19.479746878680707]
レイヤプルーニングは、ネットワークサイズを削減し、計算効率を向上させるための強力なアプローチである。
大規模深層モデル圧縮のための類似性誘導高速層分割プルーニングを提案する。
本手法は精度と計算効率の両面で最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-10-14T04:01:08Z) - Node Centrality Approximation For Large Networks Based On Inductive
Graph Neural Networks [2.4012886591705738]
ネットワーク分析において、クローズネス中央度(CC)とブロードネス中央度(BC)が重要な指標である。
大規模なネットワーク上での実践的な実装は、その高速な複雑さのため、計算的に要求される。
本稿では,CNCA-IGEモデルを提案する。CNCA-IGEモデルは,CCやBCのメトリクスに基づいてノードをランク付けするインダクティブグラフエンコーダ・デコーダモデルである。
論文 参考訳(メタデータ) (2024-03-08T01:23:12Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - DANI: Fast Diffusion Aware Network Inference with Preserving Topological
Structure Property [2.8948274245812327]
そこで我々は,DANIと呼ばれる新しい手法を提案し,その構造特性を保ちながら基礎となるネットワークを推定する。
DANIは、モジュール構造、次数分布、連結成分、密度、クラスタリング係数を含む構造特性を維持しながら、より高い精度と低い実行時間を有する。
論文 参考訳(メタデータ) (2023-10-02T23:23:00Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
大規模アクセスはIoT(Internet of Things)ネットワークにおける重要な設計課題である。
我々は、マルチアンテナベースステーション(BS)と多数の単一アンテナIoTデバイスを備えたIoTネットワークの無許可アップリンク伝送を検討する。
本稿では,低計算複雑性と高ロバスト性を実現するために,ディープニューラルネットワークに基づく新しいアルゴリズムアンローリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T05:23:05Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。