Generalization-aware Remote Sensing Change Detection via Domain-agnostic Learning
- URL: http://arxiv.org/abs/2504.00543v1
- Date: Tue, 01 Apr 2025 08:51:16 GMT
- Title: Generalization-aware Remote Sensing Change Detection via Domain-agnostic Learning
- Authors: Qi Zang, Shuang Wang, Dong Zhao, Dou Quan, Yang Hu, Licheng Jiao,
- Abstract summary: We present a generalizable domain-agnostic difference learning network (DonaNet) for change detection.<n>DonaNet learns domain-agnostic representations by removing domain-specific style of encoded features and highlighting the class characteristics of objects.<n>In the highlighting, we propose a cross-temporal generalization learning strategy to imitate latent domain shifts.
- Score: 40.762693311584144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Change detection has essential significance for the region's development, in which pseudo-changes between bitemporal images induced by imaging environmental factors are key challenges. Existing transformation-based methods regard pseudo-changes as a kind of style shift and alleviate it by transforming bitemporal images into the same style using generative adversarial networks (GANs). However, their efforts are limited by two drawbacks: 1) Transformed images suffer from distortion that reduces feature discrimination. 2) Alignment hampers the model from learning domain-agnostic representations that degrades performance on scenes with domain shifts from the training data. Therefore, oriented from pseudo-changes caused by style differences, we present a generalizable domain-agnostic difference learning network (DonaNet). For the drawback 1), we argue for local-level statistics as style proxies to assist against domain shifts. For the drawback 2), DonaNet learns domain-agnostic representations by removing domain-specific style of encoded features and highlighting the class characteristics of objects. In the removal, we propose a domain difference removal module to reduce feature variance while preserving discriminative properties and propose its enhanced version to provide possibilities for eliminating more style by decorrelating the correlation between features. In the highlighting, we propose a cross-temporal generalization learning strategy to imitate latent domain shifts, thus enabling the model to extract feature representations more robust to shifts actively. Extensive experiments conducted on three public datasets demonstrate that DonaNet outperforms existing state-of-the-art methods with a smaller model size and is more robust to domain shift.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
Change captioning aims to succinctly describe the semantic change between a pair of similar images.
Most existing methods directly capture the difference between them, which risk obtaining error-prone difference features.
We propose a distractors-immune representation learning network that correlates the corresponding channels of two image representations.
arXiv Detail & Related papers (2024-07-16T13:00:33Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
It is essential to learn a cross-domain regressor to mitigate the domain shift.
This paper proposes a novel method Adversarial Bi-Regressor Network (ABRNet) to seek more effective cross-domain regression model.
arXiv Detail & Related papers (2022-09-20T18:38:28Z) - Variational Transfer Learning using Cross-Domain Latent Modulation [1.9662978733004601]
We introduce a novel cross-domain latent modulation mechanism to a variational autoencoder framework so as to achieve effective transfer learning.
Deep representations of the source and target domains are first extracted by a unified inference model and aligned by employing gradient reversal.
The learned deep representations are then cross-modulated to the latent encoding of the alternative domain, where consistency constraints are also applied.
arXiv Detail & Related papers (2022-05-31T03:47:08Z) - An End-to-end Supervised Domain Adaptation Framework for Cross-Domain
Change Detection [29.70695339406896]
We propose an end-to-end Supervised Domain Adaptation framework for cross-domain Change Detection.
Our SDACD presents collaborative adaptations from both image and feature perspectives with supervised learning.
Our framework pushes several representative baseline models up to new State-Of-The-Art records.
arXiv Detail & Related papers (2022-04-01T01:35:30Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Deep Adversarial Transition Learning using Cross-Grafted Generative
Stacks [3.756448228784421]
We present a novel "deep adversarial transition learning" (DATL) framework that bridges the domain gap.
We construct variational auto-encoders (VAEs) for the two domains, and form bidirectional transitions by cross-grafting the VAEs' decoder stacks.
generative adversarial networks (GAN) are employed for domain adaptation, mapping the target domain data to the known label space of the source domain.
arXiv Detail & Related papers (2020-09-25T04:25:27Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area.
Recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations are not highly effective on the videos.
This paper proposes an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions.
arXiv Detail & Related papers (2020-07-31T03:48:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.