論文の概要: AttentiveGRU: Recurrent Spatio-Temporal Modeling for Advanced Radar-Based BEV Object Detection
- arxiv url: http://arxiv.org/abs/2504.00559v1
- Date: Tue, 01 Apr 2025 09:10:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:00.109029
- Title: AttentiveGRU: Recurrent Spatio-Temporal Modeling for Advanced Radar-Based BEV Object Detection
- Title(参考訳): AttentiveGRU:Advanced Radar-based BEV Object Detectionのための繰り返し時空間モデリング
- Authors: Loveneet Saini, Mirko Meuter, Hasan Tercan, Tobias Meisen,
- Abstract要約: 鳥眼視(Bird's-eye view, BEV)は、先進的な3Dレーダーによる知覚システムにおいて重要である。
本稿では,アテンラプティブ(AttenRUtive)について紹介する。
- 参考スコア(独自算出の注目度): 5.5967570276373655
- License:
- Abstract: Bird's-eye view (BEV) object detection has become important for advanced automotive 3D radar-based perception systems. However, the inherently sparse and non-deterministic nature of radar data limits the effectiveness of traditional single-frame BEV paradigms. In this paper, we addresses this limitation by introducing AttentiveGRU, a novel attention-based recurrent approach tailored for radar constraints, which extracts individualized spatio-temporal context for objects by dynamically identifying and fusing temporally correlated structures across present and memory states. By leveraging the consistency of object's latent representation over time, our approach exploits temporal relations to enrich feature representations for both stationary and moving objects, thereby enhancing detection performance and eliminating the need for externally providing or estimating any information about ego vehicle motion. Our experimental results on the public nuScenes dataset show a significant increase in mAP for the car category by 21% over the best radar-only submission. Further evaluations on an additional dataset demonstrate notable improvements in object detection capabilities, underscoring the applicability and effectiveness of our method.
- Abstract(参考訳): 鳥眼視(Bird's-eye view, BEV)は、先進的な3Dレーダーによる知覚システムにおいて重要である。
しかしながら、レーダーデータの本質的にスパースで非決定論的な性質は、従来の単一フレームのBEVパラダイムの有効性を制限している。
本稿では,現在および記憶状態にまたがる時間的相関構造を動的に識別・融合することにより,オブジェクトの個別化時空間コンテキストを抽出する,レーダー制約に適した新しい注意に基づく反復的アプローチであるAttentiveGRUを導入することにより,この制限に対処する。
物体の潜伏表現の時間的整合性を利用して時間的関係を利用して静止物体と移動物体の両方の特徴表現を豊かにすることにより、検出性能を向上し、エゴ車両の動きに関する情報を外部に提供・推定する必要をなくす。
公立のnuScenesデータセットを用いた実験結果から,自動車カテゴリーのmAPは,最高のレーダのみの提出よりも21%増加していた。
追加データセットのさらなる評価は、オブジェクト検出能力の顕著な改善を示し、本手法の適用性と有効性を裏付けるものである。
関連論文リスト
- Spatiotemporal Object Detection for Improved Aerial Vehicle Detection in Traffic Monitoring [1.0128808054306184]
本研究では,UAVによる600フレーム画像を含むSTVD(S-Temporal Vehicle Detection dataset)を提案する。
YOLOオブジェクト検出アルゴリズムが拡張され、時間的ダイナミクスが組み込まれ、単一のフレームモデルよりも性能が向上する。
論文 参考訳(メタデータ) (2024-10-17T14:49:37Z) - Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
クロスフレーム動作予測情報を用いた時空間特徴学習を容易にするために,新しいLiDAR 3Dオブジェクト検出フレームワークLiSTMを導入する。
我々は,本フレームワークが優れた3次元検出性能を実現することを示すため,アグリゲーションとnuScenesデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-09-06T16:29:04Z) - Leveraging Self-Supervised Instance Contrastive Learning for Radar
Object Detection [7.728838099011661]
本稿では,レーダ物体検出装置を事前訓練する際,RCLを例に紹介する。
我々は、より少ないデータで学習するために、物体検出器のバックボーン、頭、首を事前訓練することを目指している。
論文 参考訳(メタデータ) (2024-02-13T12:53:33Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV)は、自律走行車(AV)における視覚知覚のための最も広く使われているシーンの1つである。
近年の拡散法は、視覚知覚のための不確実性モデリングに有望なアプローチを提供するが、BEVの広い範囲において、小さな物体を効果的に検出することができない。
本稿では,BEVにおける拡散パラダイムと最先端の3Dオブジェクト検出器を組み合わせることで,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-18T09:52:14Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
カメラによる鳥眼視(BEV)知覚パラダイムは、自律運転分野において大きな進歩を遂げている。
画像平面のインスタンス認識をBEV検出器内の深度推定プロセスに統合するIA-BEVを提案する。
論文 参考訳(メタデータ) (2023-12-13T09:24:42Z) - Ego-Motion Estimation and Dynamic Motion Separation from 3D Point Clouds
for Accumulating Data and Improving 3D Object Detection [0.1474723404975345]
高解像度レーダーセンサーの1つは、ライダーセンサーと比較して、生成された点雲の空間性である。
このコントリビューションは、View-of-Delftデータセット上のレーダーポイント雲の蓄積制限を分析する。
エゴモーション推定と動的動き補正を応用して物体検出性能を向上させる実験を行った。
論文 参考訳(メタデータ) (2023-08-29T14:53:16Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Recurrent Vision Transformers for Object Detection with Event Cameras [62.27246562304705]
本稿では,イベントカメラを用いた物体検出のための新しいバックボーンであるリカレントビジョントランス (RVT) を提案する。
RVTは、イベントベースのオブジェクト検出で最先端のパフォーマンスに到達するために、ゼロからトレーニングすることができる。
私たちの研究は、イベントベースのビジョンを超えた研究に役立ち得る効果的なデザイン選択に、新たな洞察をもたらします。
論文 参考訳(メタデータ) (2022-12-11T20:28:59Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
Ret3Dと呼ばれるシンプルで効率的で効果的な2段階検出器を導入する。
Ret3Dの中核は、新しいフレーム内およびフレーム間関係モジュールの利用である。
無視できる余分なオーバーヘッドにより、Ret3Dは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-18T03:48:58Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - RV-FuseNet: Range View Based Fusion of Time-Series LiDAR Data for Joint
3D Object Detection and Motion Forecasting [13.544498422625448]
本稿では,共同検出と軌道推定のための新しいエンドツーエンドアプローチであるRV-FuseNetを提案する。
広範に使用されている鳥眼ビュー(BEV)表現の代わりに,LiDARデータのネイティブレンジビュー(RV)表現を利用する。
提案手法は,既存の最先端技術よりも動作予測性能を著しく向上することを示す。
論文 参考訳(メタデータ) (2020-05-21T19:22:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。