Enhancing Negation Awareness in Universal Text Embeddings: A Data-efficient and Computational-efficient Approach
- URL: http://arxiv.org/abs/2504.00584v1
- Date: Tue, 01 Apr 2025 09:39:57 GMT
- Title: Enhancing Negation Awareness in Universal Text Embeddings: A Data-efficient and Computational-efficient Approach
- Authors: Hongliu Cao,
- Abstract summary: Negation plays an important role in various natural language processing tasks such as Natural Language Inference and Sentiment Analysis tasks.<n>Recent advancements in universal text embeddings have demonstrated superior performance over contextual text embeddings in various tasks.<n>Due to the bias in popular evaluation benchmarks, the negation awareness capacity of these models remains unclear.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Negation plays an important role in various natural language processing tasks such as Natural Language Inference and Sentiment Analysis tasks. Numerous prior studies have found that contextual text embedding models such as BERT, ELMO, RoBERTa or XLNet face challenges in accurately understanding negation. Recent advancements in universal text embeddings have demonstrated superior performance over contextual text embeddings in various tasks. However, due to the bias in popular evaluation benchmarks, the negation awareness capacity of these models remains unclear. To bridge the gap in existing literature, an in-depth analysis is initiated in this work to study the negation awareness of cutting-edge universal text embedding models. Our findings reveal a significant lack of negation awareness in these models, often interpreting negated text pairs as semantically similar. To efficiently deal with the conflict that different tasks need different trade-offs between topic and negation information among other semantic information, a data-efficient and computational-efficient embedding re-weighting method is proposed without modifying the parameters of text embedding models. The proposed solution is able to improve text embedding models' negation awareness significantly on both simple negation understanding task and complex negation understanding task. Furthermore, the proposed solution can also significantly improve the negation awareness of Large Language Model based task-specific high dimensional universal text embeddings.
Related papers
- Enhancing Coreference Resolution with Pretrained Language Models: Bridging the Gap Between Syntax and Semantics [0.9752323911408618]
This study introduces an innovative framework aimed at enhancing coreference resolution by utilizing pretrained language models.
Our approach combines syntax parsing with semantic role labeling to accurately capture finer distinctions in referential relationships.
arXiv Detail & Related papers (2025-04-08T09:33:09Z) - Revisiting subword tokenization: A case study on affixal negation in large language models [57.75279238091522]
We measure the impact of affixal negation on modern English large language models (LLMs)
We conduct experiments using LLMs with different subword tokenization methods.
We show that models can, on the whole, reliably recognize the meaning of affixal negation.
arXiv Detail & Related papers (2024-04-03T03:14:27Z) - Generating Enhanced Negatives for Training Language-Based Object Detectors [86.1914216335631]
We propose to leverage the vast knowledge built into modern generative models to automatically build negatives that are more relevant to the original data.
Specifically, we use large-language-models to generate negative text descriptions, and text-to-image diffusion models to also generate corresponding negative images.
Our experimental analysis confirms the relevance of the generated negative data, and its use in language-based detectors improves performance on two complex benchmarks.
arXiv Detail & Related papers (2023-12-29T23:04:00Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
We show that pre-trained language models are insensitive to word order.
We propose Forced Invalidation to help preserve the importance of word order.
Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
arXiv Detail & Related papers (2023-04-11T13:42:10Z) - Multi-resolution Interpretation and Diagnostics Tool for Natural
Language Classifiers [0.0]
This paper aims to create more flexible model explainability summaries by segments of observation or clusters of words that are semantically related to each other.
In addition, we introduce a root cause analysis method for NLP models, by analyzing representative False Positive and False Negative examples from different segments.
arXiv Detail & Related papers (2023-03-06T22:59:02Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
This paper aims to improve the performance of text-to-dependence by exploring the intrinsic uncertainties in the neural network based approaches (called SUN)
Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms competitors and achieves new state-of-the-art results.
arXiv Detail & Related papers (2022-09-14T06:27:51Z) - Improving negation detection with negation-focused pre-training [58.32362243122714]
Negation is a common linguistic feature that is crucial in many language understanding tasks.
Recent work has shown that state-of-the-art NLP models underperform on samples containing negation.
We propose a new negation-focused pre-training strategy, involving targeted data augmentation and negation masking.
arXiv Detail & Related papers (2022-05-09T02:41:11Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries.
At a high level, such neural models can freely generate summaries without any constraint on the words or phrases used.
However, the neural model's abstraction ability is a double-edged sword.
arXiv Detail & Related papers (2021-04-30T08:46:13Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
We focus on the Commongen benchmark, wherein the aim is to generate a plausible sentence for a given set of input concepts.
We propose strategies for enhancing the semantic correctness of the generated text.
arXiv Detail & Related papers (2020-12-19T23:23:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.