Coca-Splat: Collaborative Optimization for Camera Parameters and 3D Gaussians
- URL: http://arxiv.org/abs/2504.00639v1
- Date: Tue, 01 Apr 2025 10:48:46 GMT
- Title: Coca-Splat: Collaborative Optimization for Camera Parameters and 3D Gaussians
- Authors: Jiamin Wu, Hongyang Li, Xiaoke Jiang, Yuan Yao, Lei Zhang,
- Abstract summary: Coca-Splat is a novel approach to address the challenges of sparse view pose-free scene reconstruction and novel view synthesis (NVS)<n>Inspired by deformable DEtection TRansformer, we design separate queries for 3D Gaussians and camera parameters.<n>We update them layer by layer through deformable Transformer layers, enabling joint optimization in a single network.
- Score: 26.3996055215988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce Coca-Splat, a novel approach to addressing the challenges of sparse view pose-free scene reconstruction and novel view synthesis (NVS) by jointly optimizing camera parameters with 3D Gaussians. Inspired by deformable DEtection TRansformer, we design separate queries for 3D Gaussians and camera parameters and update them layer by layer through deformable Transformer layers, enabling joint optimization in a single network. This design demonstrates better performance because to accurately render views that closely approximate ground-truth images relies on precise estimation of both 3D Gaussians and camera parameters. In such a design, the centers of 3D Gaussians are projected onto each view by camera parameters to get projected points, which are regarded as 2D reference points in deformable cross-attention. With camera-aware multi-view deformable cross-attention (CaMDFA), 3D Gaussians and camera parameters are intrinsically connected by sharing the 2D reference points. Additionally, 2D reference point determined rays (RayRef) defined from camera centers to the reference points assist in modeling relationship between 3D Gaussians and camera parameters through RQ-decomposition on an overdetermined system of equations derived from the rays, enhancing the relationship between 3D Gaussians and camera parameters. Extensive evaluation shows that our approach outperforms previous methods, both pose-required and pose-free, on RealEstate10K and ACID within the same pose-free setting.
Related papers
- 3R-GS: Best Practice in Optimizing Camera Poses Along with 3DGS [36.48425755917156]
3D Gaussian Splatting (3DGS) has revolutionized neural rendering with its efficiency and quality.
It heavily depends on accurate camera poses from Structure-from-Motion (SfM) systems.
We present 3R-GS, a 3D Gaussian Splatting framework that bridges this gap.
arXiv Detail & Related papers (2025-04-05T22:31:08Z) - GaussRender: Learning 3D Occupancy with Gaussian Rendering [86.89653628311565]
GaussRender is a module that improves 3D occupancy learning by enforcing projective consistency.
Our method penalizes 3D configurations that produce inconsistent 2D projections, thereby enforcing a more coherent 3D structure.
arXiv Detail & Related papers (2025-02-07T16:07:51Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.<n>In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.<n> Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.
InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.
It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.<n>We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.<n>We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Ray3D: ray-based 3D human pose estimation for monocular absolute 3D
localization [3.5379706873065917]
We propose a novel monocular ray-based 3D (Ray3D) absolute human pose estimation with calibrated camera.
Our method significantly outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2022-03-22T05:42:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.