GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition
- URL: http://arxiv.org/abs/2504.00676v1
- Date: Tue, 01 Apr 2025 11:40:50 GMT
- Title: GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition
- Authors: Anthony Yazdani, Ihor Stepanov, Douglas Teodoro,
- Abstract summary: We introduce GLiNER-biomed, a domain-adapted suite of Generalist and Lightweight Model for NER (GLiNER) models specifically tailored for biomedical NER.<n>In contrast to conventional approaches, GLiNER uses natural language descriptions to infer arbitrary entity types, enabling zero-shot recognition.<n> Evaluations on several biomedical datasets demonstrate that GLiNER-biomed outperforms state-of-the-art GLiNER models in both zero- and few-shot scenarios.
- Score: 0.06554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical named entity recognition (NER) presents unique challenges due to specialized vocabularies, the sheer volume of entities, and the continuous emergence of novel entities. Traditional NER models, constrained by fixed taxonomies and human annotations, struggle to generalize beyond predefined entity types or efficiently adapt to emerging concepts. To address these issues, we introduce GLiNER-biomed, a domain-adapted suite of Generalist and Lightweight Model for NER (GLiNER) models specifically tailored for biomedical NER. In contrast to conventional approaches, GLiNER uses natural language descriptions to infer arbitrary entity types, enabling zero-shot recognition. Our approach first distills the annotation capabilities of large language models (LLMs) into a smaller, more efficient model, enabling the generation of high-coverage synthetic biomedical NER data. We subsequently train two GLiNER architectures, uni- and bi-encoder, at multiple scales to balance computational efficiency and recognition performance. Evaluations on several biomedical datasets demonstrate that GLiNER-biomed outperforms state-of-the-art GLiNER models in both zero- and few-shot scenarios, achieving 5.96% improvement in F1-score over the strongest baseline. Ablation studies highlight the effectiveness of our synthetic data generation strategy and emphasize the complementary benefits of synthetic biomedical pre-training combined with fine-tuning on high-quality general-domain annotations. All datasets, models, and training pipelines are publicly available at https://github.com/ds4dh/GLiNER-biomed.
Related papers
- Augmenting Biomedical Named Entity Recognition with General-domain Resources [47.24727904076347]
Training a neural network-based biomedical named entity recognition (BioNER) model usually requires extensive and costly human annotations.<n>We propose GERBERA, a simple-yet-effective method that utilized general-domain NER datasets for training.<n>We systematically evaluated GERBERA on five datasets of eight entity types, collectively consisting of 81,410 instances.
arXiv Detail & Related papers (2024-06-15T15:28:02Z) - Universal and Extensible Language-Vision Models for Organ Segmentation and Tumor Detection from Abdominal Computed Tomography [50.08496922659307]
We propose a universal framework enabling a single model, termed Universal Model, to deal with multiple public datasets and adapt to new classes.
Firstly, we introduce a novel language-driven parameter generator that leverages language embeddings from large language models.
Secondly, the conventional output layers are replaced with lightweight, class-specific heads, allowing Universal Model to simultaneously segment 25 organs and six types of tumors.
arXiv Detail & Related papers (2024-05-28T16:55:15Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - GLiNER: Generalist Model for Named Entity Recognition using
Bidirectional Transformer [4.194768796374315]
Named Entity Recognition (NER) is essential in various Natural Language Processing (NLP) applications.
In this paper, we introduce a compact NER model trained to identify any type of entity.
Our model, GLiNER, facilitates parallel entity extraction, an advantage over the slow sequential token generation of Large Language Models (LLMs)
arXiv Detail & Related papers (2023-11-14T20:39:12Z) - UniversalNER: Targeted Distillation from Large Language Models for Open
Named Entity Recognition [48.977866466971655]
We show how ChatGPT can be distilled into much smaller UniversalNER models for open NER.
We assemble the largest NER benchmark to date, comprising 43 datasets across 9 diverse domains.
With a tiny fraction of parameters, UniversalNER not only acquires ChatGPT's capability in recognizing arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1 points in average.
arXiv Detail & Related papers (2023-08-07T03:39:52Z) - From Zero to Hero: Harnessing Transformers for Biomedical Named Entity Recognition in Zero- and Few-shot Contexts [0.0]
This paper proposes a method for zero- and few-shot NER in the biomedical domain.
We have achieved average F1 scores of 35.44% for zero-shot NER, 50.10% for one-shot NER, 69.94% for 10-shot NER, and 79.51% for 100-shot NER on 9 diverse evaluated biomedical entities.
arXiv Detail & Related papers (2023-05-05T12:14:22Z) - Nested Named Entity Recognition as Holistic Structure Parsing [92.8397338250383]
This work models the full nested NEs in a sentence as a holistic structure, then we propose a holistic structure parsing algorithm to disclose the entire NEs once for all.
Experiments show that our model yields promising results on widely-used benchmarks which approach or even achieve state-of-the-art.
arXiv Detail & Related papers (2022-04-17T12:48:20Z) - Fine-Tuning Large Neural Language Models for Biomedical Natural Language
Processing [55.52858954615655]
We conduct a systematic study on fine-tuning stability in biomedical NLP.
We show that finetuning performance may be sensitive to pretraining settings, especially in low-resource domains.
We show that these techniques can substantially improve fine-tuning performance for lowresource biomedical NLP applications.
arXiv Detail & Related papers (2021-12-15T04:20:35Z) - BioALBERT: A Simple and Effective Pre-trained Language Model for
Biomedical Named Entity Recognition [9.05154470433578]
Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models.
We propose biomedical ALBERT, an effective domain-specific language model trained on large-scale biomedical corpora.
arXiv Detail & Related papers (2020-09-19T12:58:47Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.