論文の概要: ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection
- arxiv url: http://arxiv.org/abs/2504.00695v2
- Date: Mon, 07 Apr 2025 06:33:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 10:47:04.720601
- Title: ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection
- Title(参考訳): ToReMi: 動的事前学習データ選択のためのトピック対応データ再重み付け
- Authors: Xiaoxuan Zhu, Zhouhong Gu, Baiqian Wu, Suhang Zheng, Tao Wang, Tianyu Li, Hongwei Feng, Yanghua Xiao,
- Abstract要約: ToReMiは、トピックの関連や観察された学習パターンに応じてトレーニングサンプル重量を調整する新しいフレームワークである。
実験の結果,ToReMiの変種は従来の事前学習手法よりも優れた性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 28.75333303894706
- License:
- Abstract: Pre-training large language models (LLMs) necessitates enormous diverse textual corpora, making effective data selection a key challenge for balancing computational resources and model performance. Current methodologies primarily emphasize data quality metrics and mixing proportions, yet they fail to adequately capture the underlying semantic connections between training samples and quality disparities within individual domains. We introduce ToReMi (Topic-based Reweighting for Model improvement), a novel two-stage framework that dynamically adjusts training sample weights according to their topical associations and observed learning patterns. Our comprehensive experiments reveal that ToReMi variants consistently achieve superior performance over conventional pre-training approaches, demonstrating accelerated perplexity reduction across multiple domains and enhanced capabilities on downstream evaluation tasks. Code is available at https://github.com/zxx000728/ToReMi.
- Abstract(参考訳): 大規模言語モデル(LLM)の事前学習は、膨大な多様なテキストコーパスを必要とするため、効率的なデータ選択が計算資源とモデル性能のバランスをとる上で重要な課題となる。
現在の方法論は、主にデータ品質の指標と混合比率を強調しているが、トレーニングサンプルと個々のドメイン内の品質格差との間の基礎となる意味的な関係を適切に捉えていない。
ToReMi(Topic-based Reweighting for Model Improvement, モデル改善のためのトピックベースリウェイト)を導入する。
包括的実験により、ToReMiの変種は従来の事前学習手法よりも一貫して優れた性能を示し、複数の領域にまたがる急激なパープレキシティの低減と下流評価タスクの強化が示された。
コードはhttps://github.com/zxx000728/ToReMiで入手できる。
関連論文リスト
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
既存のリウェイト戦略は主にグループレベルのデータの重要性に焦点を当てている。
動的・インスタンスレベルのデータ再重み付けのための新しいアルゴリズムを提案する。
当社のフレームワークでは,冗長データや非形式データを優先的に再重み付けする戦略を考案することが可能です。
論文 参考訳(メタデータ) (2025-02-10T17:57:15Z) - Feasible Learning [78.6167929413604]
本稿では,サンプル中心の学習パラダイムであるFeasible Learning(FL)を紹介する。
大規模言語モデルにおける画像分類, 年齢回帰, 好みの最適化といった経験的分析により, FLを用いて訓練したモデルでは, 平均的性能に限界があるものの, ERMと比較して改善された尾の挙動を示しながらデータから学習できることが実証された。
論文 参考訳(メタデータ) (2025-01-24T20:39:38Z) - Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
本稿では,LVLM(Large Vision Language Models)のマルチモーダル事前学習品質を示すために,MIR(Modality Integration Rate)を提案する。
MIRは、トレーニングデータ選択、トレーニング戦略スケジュール、モデルアーキテクチャ設計に重点を置いて、トレーニング前の結果を改善する。
論文 参考訳(メタデータ) (2024-10-09T17:59:04Z) - Test-Time Adaptation for Combating Missing Modalities in Egocentric Videos [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Self-Influence Guided Data Reweighting for Language Model Pre-training [46.57714637505164]
言語モデル (LM) は、様々なNLPタスクのためのモデルを開発するためのデフォルトの出発点となっている。
コーパス内のすべてのデータサンプルは、LM事前トレーニング中に同等に重要視される。
データの関連性や品質のレベルが異なるため、すべてのデータサンプルと同等の重要性が最適な選択ではないかもしれない。
本稿では,サンプルの重要度と事前学習の指標として自己影響(SI)スコアを活用することで,サンプルを共同で重み付けするPreSenceを提案する。
論文 参考訳(メタデータ) (2023-11-02T01:00:46Z) - End-to-End Weak Supervision [15.125993628007972]
下流モデルを直接学習するためのエンドツーエンドアプローチを提案する。
下流テストセットにおけるエンドモデル性能の観点から,先行作業よりも性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-07-05T19:10:11Z) - Reinforced Curriculum Learning on Pre-trained Neural Machine Translation
Models [20.976165305749777]
我々は,既存のトレーニングセットから影響力のあるデータサンプルを再選択することで,事前学習したNMTモデルを改善するカリキュラムを学習する。
本稿では,決定論的アクタ批判に基づくデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-13T03:40:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。