Detection of Disease on Nasal Breath Sound by New Lightweight Architecture: Using COVID-19 as An Example
- URL: http://arxiv.org/abs/2504.00730v2
- Date: Sat, 19 Apr 2025 06:43:31 GMT
- Title: Detection of Disease on Nasal Breath Sound by New Lightweight Architecture: Using COVID-19 as An Example
- Authors: Jiayuan She, Lin Shi, Peiqi Li, Ziling Dong, Renxing Li, Shengkai Li, Liping Gu, Zhao Tong, Zhuochang Yang, Yajie Ji, Liang Feng, Jiangang Chen,
- Abstract summary: Infectious diseases, particularly COVID-19, continue to be a significant global health issue.<n>This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones.
- Score: 4.618578603062536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background. Infectious diseases, particularly COVID-19, continue to be a significant global health issue. Although many countries have reduced or stopped large-scale testing measures, the detection of such diseases remains a propriety. Objective. This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones. Methodology. Nasal breathing audio from 128 patients diagnosed with the Omicron variant was collected. Mel-Frequency Cepstral Coefficients (MFCCs), a widely used feature in speech and sound analysis, were employed for extracting important characteristics from the audio signals. Additional feature selection was performed using Random Forest (RF) and Principal Component Analysis (PCA) for dimensionality reduction. A Dense-ReLU-Dropout model was trained with K-fold cross-validation (K=3), and performance metrics like accuracy, precision, recall, and F1-score were used to evaluate the model. Results. The proposed model achieved 97% accuracy in detecting COVID-19 from nasal breathing sounds, outperforming state-of-the-art methods such as those by [23] and [13]. Our Dense-ReLU-Dropout model, using RF and PCA for feature selection, achieves high accuracy with greater computational efficiency compared to existing methods that require more complex models or larger datasets. Conclusion. The findings suggest that the proposed method holds significant potential for clinical implementation, advancing smartphone-based diagnostics in infectious diseases. The Dense-ReLU-Dropout model, combined with innovative feature processing techniques, offers a promising approach for efficient and accurate COVID-19 detection, showcasing the capabilities of mobile device-based diagnostics
Related papers
- EVolutionary Independent DEtermiNistiC Explanation [5.127310126394387]
This paper introduces the Evolutionary Independent Deterministic Explanation (EVIDENCE) theory.<n>EVIDENCE offers a deterministic, model-independent method for extracting significant signals from black-box models.<n> Practical applications of EVIDENCE include improving diagnostic accuracy in healthcare and enhancing audio signal analysis.
arXiv Detail & Related papers (2025-01-20T12:05:14Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Developing a multi-variate prediction model for the detection of
COVID-19 from Crowd-sourced Respiratory Voice Data [0.0]
The novelty of this work is in the development of a deep learning model for the identification of COVID-19 patients from voice recordings.
We used the Cambridge University dataset consisting of 893 audio samples, crowd-sourced from 4352 participants that used a COVID-19 Sounds app.
Based on the voice data, we developed deep learning classification models to detect positive COVID-19 cases.
arXiv Detail & Related papers (2022-09-08T11:46:37Z) - Automatic COVID-19 disease diagnosis using 1D convolutional neural
network and augmentation with human respiratory sound based on parameters:
cough, breath, and voice [0.0]
Various models of Artificial Intelligence (AI) entered into the real-world to detect the COVID-19 disease from human-generated sounds such as voice/speech, cough, and breath.
One dimension (1D) CNN is suggested and implemented to diagnose respiratory diseases of COVID-19 from human respiratory sounds such as a voice, cough, and breath.
An augmentation-based mechanism is applied to improve the preprocessing performance of the COVID-19 sounds dataset.
arXiv Detail & Related papers (2021-12-14T10:41:04Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
We propose a machine learning method to quickly triage COVID-19 using recordings made on consumer devices.
The approach combines signal processing methods with fine-tuned deep learning networks and provides methods for signal denoising, cough detection and classification.
We have also developed and deployed a mobile application that uses symptoms checker together with voice, breath and cough signals to detect COVID-19 infection.
arXiv Detail & Related papers (2021-07-12T08:07:56Z) - Virufy: A Multi-Branch Deep Learning Network for Automated Detection of
COVID-19 [1.9899603776429056]
Researchers have successfully presented models for detecting COVID-19 infection status using audio samples recorded in clinical settings.
We propose a multi-branch deep learning network that is trained and tested on crowdsourced data where most of the data has not been manually processed and cleaned.
arXiv Detail & Related papers (2021-03-02T15:31:09Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
We demonstrate the first attempt to diagnose COVID-19 using end-to-end deep learning from a crowd-sourced dataset of audio samples.
We introduce a novel modelling strategy using a custom deep neural network to diagnose COVID-19 from a joint breath and cough representation.
arXiv Detail & Related papers (2021-01-07T01:13:00Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.