Multi-Task Neural Architecture Search Using Architecture Embedding and Transfer Rank
- URL: http://arxiv.org/abs/2504.00772v1
- Date: Tue, 01 Apr 2025 13:23:11 GMT
- Title: Multi-Task Neural Architecture Search Using Architecture Embedding and Transfer Rank
- Authors: TingJie Zhang, HaiLin Liu,
- Abstract summary: Multi-task neural architecture search (NAS) enables transferring architectural knowledge among different tasks.<n>We propose KTNAS, an evolutionary cross-task NAS algorithm, to enhance transfer efficiency.<n> Experimental results show that KTNAS outperforms peer multi-task NAS algorithms in search efficiency and downstream task performance.
- Score: 0.21485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task neural architecture search (NAS) enables transferring architectural knowledge among different tasks. However, ranking disorder between the source task and the target task degrades the architecture performance on the downstream task. We propose KTNAS, an evolutionary cross-task NAS algorithm, to enhance transfer efficiency. Our data-agnostic method converts neural architectures into graphs and uses architecture embedding vectors for the subsequent architecture performance prediction. The concept of transfer rank, an instance-based classifier, is introduced into KTNAS to address the performance degradation issue. We verify the search efficiency on NASBench-201 and transferability to various vision tasks on Micro TransNAS-Bench-101. The scalability of our method is demonstrated on DARTs search space including CIFAR-10/100, MNIST/Fashion-MNIST, MedMNIST. Experimental results show that KTNAS outperforms peer multi-task NAS algorithms in search efficiency and downstream task performance. Ablation studies demonstrate the vital importance of transfer rank for transfer performance.
Related papers
- Delta-NAS: Difference of Architecture Encoding for Predictor-based Evolutionary Neural Architecture Search [5.1331676121360985]
We craft an algorithm with the capability to perform fine-grain NAS at a low cost.
We propose projecting the problem to a lower dimensional space through predicting the difference in accuracy of a pair of similar networks.
arXiv Detail & Related papers (2024-11-21T02:43:32Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
We study the generalization properties of Neural Architecture Search (NAS) under a unifying framework.
We derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime.
We show how the derived results can guide NAS to select the top-performing architectures, even in the case without training.
arXiv Detail & Related papers (2022-09-15T12:11:41Z) - Warm-starting DARTS using meta-learning [4.035753155957698]
Neural architecture search (NAS) has shown great promise in the field of automated machine learning (AutoML)
We present a meta-learning framework to warm-start Differentiable architecture search (DARTS)
arXiv Detail & Related papers (2022-05-12T20:40:26Z) - Efficient Architecture Search for Diverse Tasks [29.83517145790238]
We study neural architecture search (NAS) for efficiently solving diverse problems.
We introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations using the Fourier diagonalization of convolution.
We evaluate DASH-Bench-360, a suite of ten tasks designed for NAS benchmarking in diverse domains.
arXiv Detail & Related papers (2022-04-15T17:21:27Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - NAS-Bench-360: Benchmarking Diverse Tasks for Neural Architecture Search [18.9676056830197]
Most existing neural architecture search (NAS) benchmarks and algorithms prioritize performance on well-studied tasks.
We present NAS-Bench-360, a benchmark suite for evaluating state-of-the-art NAS methods for convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-10-12T01:13:18Z) - TransNAS-Bench-101: Improving Transferability and Generalizability of
Cross-Task Neural Architecture Search [98.22779489340869]
We propose TransNAS-Bench-101, a benchmark dataset containing network performance across seven vision tasks.
We explore two fundamentally different types of search space: cell-level search space and macro-level search space.
With 7,352 backbones evaluated on seven tasks, 51,464 trained models with detailed training information are provided.
arXiv Detail & Related papers (2021-05-25T12:15:21Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z) - NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
Search [55.12928953187342]
We propose an extension to NAS-Bench-101: NAS-Bench-201 with a different search space, results on multiple datasets, and more diagnostic information.
NAS-Bench-201 has a fixed search space and provides a unified benchmark for almost any up-to-date NAS algorithms.
We provide additional diagnostic information such as fine-grained loss and accuracy, which can give inspirations to new designs of NAS algorithms.
arXiv Detail & Related papers (2020-01-02T05:28:26Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.