論文の概要: Exploring Personalized Federated Learning Architectures for Violence Detection in Surveillance Videos
- arxiv url: http://arxiv.org/abs/2504.00857v1
- Date: Tue, 01 Apr 2025 14:47:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:35.714495
- Title: Exploring Personalized Federated Learning Architectures for Violence Detection in Surveillance Videos
- Title(参考訳): 監視ビデオにおける暴力検出のための個人化フェデレーション学習アーキテクチャの探索
- Authors: Mohammad Kassir, Siba Haidar, Antoun Yaacoub,
- Abstract要約: 都市監視システムにおける暴力的事件を検出するという課題は、ビデオデータの輝かしく多様な性質によって複雑化されている。
本稿では,これらの問題に対処するために,フェデレート・パーソナライズド・ラーニング(Federated Personalized Learning)を用いたターゲット・アプローチを提案する。
本手法は学習モデルを各監視ノードのユニークなデータ特性に適応させ,監視ビデオデータの異種性および非IID特性を効果的に管理する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The challenge of detecting violent incidents in urban surveillance systems is compounded by the voluminous and diverse nature of video data. This paper presents a targeted approach using Personalized Federated Learning (PFL) to address these issues, specifically employing the Federated Learning with Personalization Layers method within the Flower framework. Our methodology adapts learning models to the unique data characteristics of each surveillance node, effectively managing the heterogeneous and non-IID nature of surveillance video data. Through rigorous experiments conducted on balanced and imbalanced datasets, our PFL models demonstrated enhanced accuracy and efficiency, achieving up to 99.3% accuracy. This study underscores the potential of PFL to significantly improve the scalability and effectiveness of surveillance systems, offering a robust, privacy-preserving solution for violence detection in complex urban environments.
- Abstract(参考訳): 都市監視システムにおける暴力的事件を検出するという課題は、ビデオデータの輝かしく多様な性質によって複雑化されている。
本稿では、これらの問題に対処するためにパーソナライズド・フェデレーション・ラーニング(PFL)を用いて、特にフラワー・フレームワーク内でのフェデレーション・ラーニング・アンド・パーソナライズ・レイヤー法(Federated Learning with Personalization Layers)を用いて、ターゲットとなるアプローチを提案する。
本手法は学習モデルを各監視ノードのユニークなデータ特性に適応させ,監視ビデオデータの異種性および非IID特性を効果的に管理する。
バランスの取れたデータセットと不均衡なデータセットで厳密な実験を行うことで、我々のPFLモデルは精度と効率を向上し、最大99.3%の精度を実現した。
本研究は、複雑な都市環境における暴力検知のための堅牢でプライバシー保護のソリューションを提供することにより、監視システムのスケーラビリティと有効性を大幅に向上させるPFLの可能性を明らかにする。
関連論文リスト
- Federated Continual Learning: Concepts, Challenges, and Solutions [3.379574469735166]
Federated Continual Learning (FCL)は、動的環境における協調的なモデルトレーニングのための堅牢なソリューションとして登場した。
この調査は、異質性、モデル安定性、通信オーバーヘッド、プライバシー保護といった重要な課題に焦点を当てている。
論文 参考訳(メタデータ) (2025-02-10T21:51:02Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models [6.921070916461661]
フェデレートラーニング(FL)は、複数のクライアントがデータのプライバシを保持しながらモデルをまとめてトレーニングすることを可能にする。
ワンショットフェデレーション学習は、コミュニケーションラウンドの削減、効率の向上、盗聴攻撃に対するセキュリティ向上によるソリューションとして登場した。
論文 参考訳(メタデータ) (2024-05-02T17:26:52Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL)は、分散型エッジデバイス間で機械学習モデルをトレーニングするための有望なパラダイムを提供する。
これらの分散環境におけるデータの完全性とトレーサビリティの確保は、依然として重要な課題である。
FLシステムにおけるデータプロファイランスとモデルの透明性を高めるための最初のアプローチの1つを提案する。
論文 参考訳(メタデータ) (2024-03-03T09:08:41Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications [5.5099914877576985]
Federated Learning(FL)は、機密データを保護し、モデルパフォーマンスを改善しながら、分散コラボレーションを可能にすることによって、ディープニューラルネットワークのトレーニング方法に革命をもたらした。
本稿では,これらの課題に対処するだけでなく,FLシステムにおける高度な集約技術に対して$mathsfbaseline$として基本的な参照ポイントを提供する,Estimated Mean Aggregation (EMA) という革新的なソリューションを紹介する。
論文 参考訳(メタデータ) (2023-09-21T17:17:28Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Towards Understanding Quality Challenges of the Federated Learning: A
First Look from the Lens of Robustness [4.822471415125479]
Federated Learning(FL)は、すべての参加者のデータセット全体をトレーニングに活用しながら、ユーザのデータのプライバシを保護することを目的としている。
FLは依然として攻撃やビザンチン障害などの品質問題に悩まされる傾向にある。
本報告では,攻撃・故障発生におけるSOTA(State-of-the-art)の強靭なFL手法の有効性について検討する。
論文 参考訳(メタデータ) (2022-01-05T02:06:39Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。