論文の概要: Predicting Movie Production Years through Facial Recognition of Actors with Machine Learning
- arxiv url: http://arxiv.org/abs/2504.01047v1
- Date: Tue, 01 Apr 2025 04:46:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:25:41.007746
- Title: Predicting Movie Production Years through Facial Recognition of Actors with Machine Learning
- Title(参考訳): 機械学習による俳優の顔認識による映画制作年数予測
- Authors: Asraa Muayed Abdalah, Noor Redha Alkazaz,
- Abstract要約: 本研究では、機械学習アルゴリズムを用いて俳優を特定し、映画からランダムに撮影された画像から俳優の年齢を抽出する。
アラブ映画から撮影された画像の使用には、一様でない照明、俳優のための異なる複数のポーズ、俳優や俳優のグループとの複数の要素などが含まれる。
ロジスティック回帰モデルは、トレーニングフェーズにおける他のモデルと比較して最高のパフォーマンスを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study used machine learning algorithms to identify actors and extract the age of actors from images taken randomly from movies. The use of images taken from Arab movies includes challenges such as non-uniform lighting, different and multiple poses for the actors and multiple elements with the actor or a group of actors. Additionally, the use of make-up, wigs, beards, and wearing different accessories and costumes made it difficult for the system to identify the personality of the same actor. The Arab Actors Dataset-AAD comprises 574 images sourced from various movies, encompassing both black and white as well as color compositions. The images depict complete scenes or fragments thereof. Multiple models were employed for feature extraction, and diverse machine learning algorithms were utilized during the classification and prediction stages to determine the most effective algorithm for handling such image types. The study demonstrated the effectiveness of the Logistic Regression model exhibited the best performance compared to other models in the training phase, as evidenced by its AUC, precision, CA and F1score values of 99%, 86%, 85.5% and 84.2% respectively. The findings of this study can be used to improve the precision and reliability of facial recognition technology for various uses as with movies search services, movie suggestion algorithms, and genre classification of movies.
- Abstract(参考訳): 本研究では、機械学習アルゴリズムを用いて俳優を特定し、映画からランダムに撮影された画像から俳優の年齢を抽出した。
アラブ映画から撮影された画像の使用には、一様でない照明、俳優のための異なる複数のポーズ、俳優や俳優のグループとの複数の要素などが含まれる。
また、メイクアップ、かつら、ひげを生やし、さまざまなアクセサリーや衣装を身に着けることによって、同一人物の性格を識別することが困難になった。
アラビア・アクターズ・データセット-AADは、様々な映画から得られた574枚の画像で構成されており、白黒とカラー構成の両方を含んでいる。
絵は、その完全な場面や断片を描いている。
特徴抽出には複数のモデルが使用され、分類と予測段階において多様な機械学習アルゴリズムを使用して、そのような画像タイプを扱う上で最も効果的なアルゴリズムが決定された。
この研究は、ロジスティック回帰モデルの有効性が、AUC、精度、CA、F1スコア値それぞれ99%、86%、85.5%、84.2%のトレーニングフェーズにおける他のモデルと比較して、最高のパフォーマンスを示した。
本研究は,映画検索サービス,映画提案アルゴリズム,ジャンル分類など,さまざまな用途において,顔認識技術の精度と信頼性を向上させるために利用することができる。
関連論文リスト
- MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training [62.843316348659165]
ディープラーニングに基づく画像マッチングアルゴリズムは、人間を劇的に上回り、大量の対応を素早く正確に見つける。
本稿では, 画像間の基本構造を認識し, 一致させるためのモデル学習のために, 合成モード間学習信号を利用する大規模事前学習フレームワークを提案する。
我々の重要な発見は、我々のフレームワークで訓練されたマッチングモデルが、目に見えない8つのクロスモダリティ登録タスクにまたがる顕著な一般化性を達成することである。
論文 参考訳(メタデータ) (2025-01-13T18:37:36Z) - ViLP: Knowledge Exploration using Vision, Language, and Pose Embeddings
for Video Action Recognition [4.36572039512405]
本稿では,ビデオ行動認識のための視覚言語モデル(VLM)について紹介する。
特に、この手法は2つの一般的な人間のビデオ行動認識ベンチマークデータセットにおいて、92.81%と73.02%の精度を達成する。
論文 参考訳(メタデータ) (2023-08-07T20:50:54Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis [60.13902294276283]
我々は826の動画(413のリアルと413の操作)からなるデータセットであるVideoShamを提示する。
既存のディープフェイクデータセットの多くは、2種類の顔操作にのみ焦点をあてている。
我々の分析によると、最先端の操作検出アルゴリズムはいくつかの特定の攻撃に対してのみ有効であり、VideoShamではうまくスケールしない。
論文 参考訳(メタデータ) (2022-07-26T17:39:04Z) - Hybrid Facial Expression Recognition (FER2013) Model for Real-Time
Emotion Classification and Prediction [0.0]
本稿では,Deep Convolutional Neural Network(DCNN)とHaar Cascadeディープラーニングアーキテクチャを組み合わせた,表情認識のためのハイブリッドモデルを提案する。
目的は、リアルタイムおよびデジタル顔画像から、考慮された7つの顔感情カテゴリの1つに分類することである。
実験結果から, 最先端実験や研究と比較して, 分類性能は有意に向上した。
論文 参考訳(メタデータ) (2022-06-19T23:43:41Z) - Space-Time Crop & Attend: Improving Cross-modal Video Representation
Learning [88.71867887257274]
トリミングのような空間拡張はビデオでもうまく機能するが、以前の実装ではうまく機能するのに十分な規模でこれを行うことができなかった。
そこで本研究ではまず,このような拡張をより効率的にシミュレートする手法であるFeature Cropについて紹介する。
第2に,ナイーブ平均プーリングとは対照的に,変圧器に基づく注意性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-03-18T12:32:24Z) - Video Action Recognition Using spatio-temporal optical flow video frames [0.0]
ビデオにおける人間の行動の認識には多くの問題がある。
本稿では,Deep Neural Networksを用いたビデオ分類のための空間的および時間的パターン認識に注目する。
最終認識精度は約94%であった。
論文 参考訳(メタデータ) (2021-02-05T19:46:49Z) - Improved Actor Relation Graph based Group Activity Recognition [0.0]
人間の行動やグループ活動の詳細な説明は必須情報であり、リアルタイムCCTVビデオ監視、医療、スポーツビデオ分析などに利用することができる。
本研究では,一対のアクターの外観的類似性とアクターの位置を学習することで,グループ活動認識を主眼とする映像理解手法を提案する。
論文 参考訳(メタデータ) (2020-10-24T19:46:49Z) - Toward Accurate Person-level Action Recognition in Videos of Crowded
Scenes [131.9067467127761]
我々は、シーンの情報を完全に活用し、新しいデータを集めることで、アクション認識を改善することに集中する。
具体的には、各フレームの空間的位置を検出するために、強い人間の検出器を採用する。
そして、行動認識モデルを適用して、HIEデータセットとインターネットから多様なシーンを持つ新しいデータの両方でビデオフレームから時間情報を学ぶ。
論文 参考訳(メタデータ) (2020-10-16T13:08:50Z) - Detecting Face2Face Facial Reenactment in Videos [76.9573023955201]
本研究では,再現性に基づく変化を検出する学習に基づくアルゴリズムを提案する。
提案アルゴリズムは,局所的なアーティファクトを学習し,様々な圧縮レベルで堅牢な性能を提供するマルチストリームネットワークを用いている。
その結果, 99.96%, 99.10%, 91.20%の非, 容易, 硬度圧縮係数が得られた。
論文 参考訳(メタデータ) (2020-01-21T11:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。