It costs nothing to teleport information into a black hole
- URL: http://arxiv.org/abs/2504.01058v1
- Date: Tue, 01 Apr 2025 18:00:00 GMT
- Title: It costs nothing to teleport information into a black hole
- Authors: Jonah Kudler-Flam, Geoff Penington,
- Abstract summary: We explain how the recently discovered phenomenon of black hole decoherence allows quantum information to be teleported into a black hole, with arbitrarily small energy cost.<n>In accordance with Landauer's principle, a nonzero minimum energy cost only appears when there is a net erasure of information and noise from the exterior or, equivalently, when zerobits'' are sent into the black hole.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is often claimed that adding a qubit to a black hole requires energy $\Delta E \geq T_H \log 2$ so that the extra Bekenstein-Hawking entropy can accommodate the qubit. In this essay, we explain how the recently discovered phenomenon of black hole decoherence allows quantum information to be teleported into a black hole, with arbitrarily small energy cost. The generalized second law is not violated and there is no conflict with unitarity because the teleportation creates new entanglement, analogous to Hawking radiation, between the black hole interior and exterior. In accordance with Landauer's principle, a nonzero minimum energy cost only appears when there is a net erasure of information and noise from the exterior or, equivalently, when ``zerobits'' are sent into the black hole.
Related papers
- Out of the box approach to Black hole Information paradox [0.0]
Black hole information loss paradox arises from semiclassical arguments.
I propose that in a complete theory of quantum gravity, any region that could collapse into a black hole should already be described by a mixed state.
arXiv Detail & Related papers (2025-04-14T17:19:57Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Page Time as a Transition of Information Channels: High-fidelity
Information Retrieval for Radiating Black Holes [11.13371546439765]
In this Letter, we demonstrate that this view can be relaxed in a new postselection model.
We investigate information recoverability in a radiating black hole through the non-unitary dynamics that projects the randomly-selected modes from a scrambling unitary.
We show that the model has the merit of producing the von Neumann entropy of black holes consistent with the island formula calculation.
In this model the Page time gains a new interpretation as the transition point between two channels of information transmission when sufficient amounts of effective modes are annihilated inside the horizon.
arXiv Detail & Related papers (2023-09-05T03:12:48Z) - Stimulated Emission of Radiation and the Black Hole Information Problem [0.0]
Black holes not only emit radiation spontaneously, but also respond to infalling matter and radiation by emitting approximate clones of those fields in a stimulated manner.
I show how stimulated emission turns the black hole into an almost optimal quantum cloning machine.
I speculate about possible observable consequences of stimulated emission of radiation in black holes.
arXiv Detail & Related papers (2023-06-24T03:05:48Z) - Constraints on physical computers in holographic spacetimes [49.1574468325115]
We show that there are computations on $n$ qubits which cannot be implemented inside of black holes with entropy less than $O(2n)$.
We argue computations happening inside the black hole must be implementable in a programmable quantum processor.
arXiv Detail & Related papers (2023-04-19T18:00:50Z) - The black hole information loss puzzle, matter-gravity entanglement
entropy and the second law [0.0]
Since Hawking's 1974 discovery, we expect that a black hole formed by collapse will emit radiation and eventually disappear.
We suggest physical entropy should be identified with matter-gravity entanglement entropy.
More work is needed to find out if it is indeed so.
arXiv Detail & Related papers (2022-06-15T10:46:34Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Information storage and near horizon quantum correlations [0.0]
We show that the entropy sphere associated with the underlying microstructure has to be necessarily broadened when the fine grained radiation entropy becomes maximal.
We argue that the standard thermodynamical description is valid so long the black hole viewed from outside is sufficiently large, radiation escaping into the future null infinity can be described on a smooth spacetime background, and the von Neumann entropy of Hawking radiation evolves unitarily.
arXiv Detail & Related papers (2021-09-03T17:32:45Z) - What can we learn about islands and state paradox from quantum
information theory? [10.24376036299883]
We show that the Page curve can still be realized even if information is lost and the information paradox can be attributed to the measurement problem.
Though speculative, the similarities between the black hole information problem and the measurement problem may suggest some link in the origins of the two fundamental issues of distant fields.
arXiv Detail & Related papers (2021-07-20T02:03:09Z) - Second law of black hole thermodynamics [2.538209532048867]
If simple entropy in the Bekenstein-Hawking area law for a Schwarzschild black hole is replaced with 'negative' quantum conditional entropy, the first law for black hole mechanics is resolved.
Here, with the no-hair conjecture, we derive the perfect picture of a second law of black hole thermodynamics for any black hole from the modified area law.
If this is confirmed, the modified area law could be to the first example of fundamental equations in physics which cannot be described without the concept of quantum information.
arXiv Detail & Related papers (2020-01-09T09:33:35Z) - Do black holes store negative entropy? [1.7068557927955383]
The Bekenstein-Hawking equation states that black holes should have entropy proportional to their areas to make black hole physics compatible with the second law of thermodynamics.
This equation leads to an inconsistency among the first law of black hole mechanics, the entropy law of quantum mechanics, and a picture for Hawking radiation, creation of entangled pairs near the horizon.
Here we propose an equation alternative to the Bekenstein-Hawking equation from the viewpoint of quantum information.
arXiv Detail & Related papers (2018-07-18T02:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.