論文の概要: Multilingual and Multi-Accent Jailbreaking of Audio LLMs
- arxiv url: http://arxiv.org/abs/2504.01094v1
- Date: Tue, 01 Apr 2025 18:12:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:25:30.033128
- Title: Multilingual and Multi-Accent Jailbreaking of Audio LLMs
- Title(参考訳): オーディオLLMの多言語・多言語ジェイルブレーク
- Authors: Jaechul Roh, Virat Shejwalkar, Amir Houmansadr,
- Abstract要約: Multi-AudioJailは、マルチリンガルおよびマルチアクセントオーディオジェイルブレイクを利用する最初の体系的なフレームワークである。
音の摂動が言語間音声学とどのように相互作用し、ジェイルブレイクの成功率を急上昇させるかを示す。
クロスモーダル・ディフェンスの研究を促進するためにデータセットをリリースする予定です。
- 参考スコア(独自算出の注目度): 19.5428160851918
- License:
- Abstract: Large Audio Language Models (LALMs) have significantly advanced audio understanding but introduce critical security risks, particularly through audio jailbreaks. While prior work has focused on English-centric attacks, we expose a far more severe vulnerability: adversarial multilingual and multi-accent audio jailbreaks, where linguistic and acoustic variations dramatically amplify attack success. In this paper, we introduce Multi-AudioJail, the first systematic framework to exploit these vulnerabilities through (1) a novel dataset of adversarially perturbed multilingual/multi-accent audio jailbreaking prompts, and (2) a hierarchical evaluation pipeline revealing that how acoustic perturbations (e.g., reverberation, echo, and whisper effects) interacts with cross-lingual phonetics to cause jailbreak success rates (JSRs) to surge by up to +57.25 percentage points (e.g., reverberated Kenyan-accented attack on MERaLiON). Crucially, our work further reveals that multimodal LLMs are inherently more vulnerable than unimodal systems: attackers need only exploit the weakest link (e.g., non-English audio inputs) to compromise the entire model, which we empirically show by multilingual audio-only attacks achieving 3.1x higher success rates than text-only attacks. We plan to release our dataset to spur research into cross-modal defenses, urging the community to address this expanding attack surface in multimodality as LALMs evolve.
- Abstract(参考訳): 大規模オーディオ言語モデル(LALM)は、音声理解が著しく進歩しているが、特にオーディオ・ジェイルブレイクによって、重大なセキュリティリスクが生じる。
以前の研究は英語中心の攻撃に重点を置いていたが、より深刻な脆弱性が明らかにされている。
本稿では,(1)逆向きに摂動するマルチリンガル/マルチアクセント・オーディオ・ジェイルブレイク・プロンプトの新たなデータセット,(2)音響的摂動(例えば,残響,エコー,ささやき声)が言語間音声学とどのように相互作用し,ジェイルブレイクの成功率(JSR)を最大+57.25ポイント(例えば,ケニアによるMERaLiONに対する攻撃)に上昇させるかを明らかにする階層的評価パイプラインによって,これらの脆弱性を悪用する最初の体系的フレームワークであるMulti-AudioJailを紹介する。
攻撃者は、最も弱いリンク(例えば、非英語の音声入力)を利用するだけで、モデル全体を損なうことができる。
LALMが進化するにつれて、この拡大する攻撃面に対処するようコミュニティに促す。
関連論文リスト
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversationは、新しいマルチターンジェイルブレイクフレームワークである。
有害なクエリを良心的な推論タスクに再構成する。
RACEは,複雑な会話シナリオにおいて,最先端攻撃の有効性を実現する。
論文 参考訳(メタデータ) (2025-02-16T09:27:44Z) - `Do as I say not as I do': A Semi-Automated Approach for Jailbreak Prompt Attack against Multimodal LLMs [6.151779089440453]
マルチモーダル大言語モデル(LLM)に対する最初の音声ベースのジェイルブレイク攻撃を導入する。
本稿では,不許可なプロンプトを,良心的かつ物語駆動的なプロンプトによって側面に配置する,新たな戦略を提案する。
我々は、Flanking Attackは最先端のLLMを操作でき、不整合および禁止された出力を生成することを実証する。
論文 参考訳(メタデータ) (2025-02-02T10:05:08Z) - "I am bad": Interpreting Stealthy, Universal and Robust Audio Jailbreaks in Audio-Language Models [0.9480364746270077]
本稿では,Audio-Language Models(ALMs)を対象とする音声ジェイルブレイクについて検討する。
我々は、プロンプト、タスク、さらにはベースオーディオサンプルをまたいで一般化する対向的摂動を構築する。
我々は、ALMがこれらの音声相手の例をどう解釈するかを分析し、知覚不能な一対一の有毒な音声を符号化する。
論文 参考訳(メタデータ) (2025-02-02T08:36:23Z) - MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogue [35.7801861576917]
大きな言語モデル(LLM)は、知識と理解能力の貯蓄において優れた性能を示す。
LLMは、ジェイルブレイク攻撃を受けたとき、違法または非倫理的な反応を起こしやすいことが示されている。
本稿では,人的価値に対する潜在的な脅威を識別・緩和する上でのステルスネスの重要性を強調した,複数ラウンドの対話型ジェイルブレイクエージェントを提案する。
論文 参考訳(メタデータ) (2024-11-06T10:32:09Z) - Audio Is the Achilles' Heel: Red Teaming Audio Large Multimodal Models [50.89022445197919]
我々は、オープンソースのオーディオLMMが有害な音声質問に対して平均69.14%の攻撃成功率を被っていることを示す。
Gemini-1.5-Proの音声固有のジェイルブレイクは、有害なクエリベンチマークで70.67%の攻撃成功率を達成した。
論文 参考訳(メタデータ) (2024-10-31T12:11:17Z) - Benchmarking LLM Guardrails in Handling Multilingual Toxicity [57.296161186129545]
7つのデータセットと10以上の言語にまたがる包括的な多言語テストスイートを導入し、最先端ガードレールのパフォーマンスをベンチマークする。
近年の脱獄技術に対するガードレールの弾力性について検討し,ガードレールの性能に及ぼすコンテキスト内安全ポリシーと言語資源の可利用性の影響について検討した。
以上の結果から, 既存のガードレールは多言語毒性の処理に依然として効果がなく, 脱獄プロンプトに対する堅牢性が欠如していることが示唆された。
論文 参考訳(メタデータ) (2024-10-29T15:51:24Z) - Multi-Turn Context Jailbreak Attack on Large Language Models From First Principles [2.5167155755957316]
コンテキスト・フュージョン・アタック (Context Fusion Attack, CFA) は、コンテキスト・フュージョン・ブラックボックス・ジェイルブレイク・アタックの手法である。
また,他の多ターン攻撃戦略と比較して,CFAの成功率,ばらつき,有害性を示す。
論文 参考訳(メタデータ) (2024-08-08T09:18:47Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - TuBA: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning [63.481446315733145]
多言語大言語モデル(LLM)に対する言語間バックドア攻撃は未調査である。
本研究は, 教育指導データが有毒でない言語に対して, 教育指導データの有毒化がアウトプットに与える影響について検討した。
本手法は,mT5 や GPT-4o などのモデルにおいて,高い攻撃成功率を示し,12言語中7言語以上で90%以上を突破した。
論文 参考訳(メタデータ) (2024-04-30T14:43:57Z) - A Cross-Language Investigation into Jailbreak Attacks in Large Language
Models [14.226415550366504]
特に未発見の領域は多言語ジェイルブレイク攻撃である。
この特定の脅威に対処する総合的な実証研究が欠如している。
本研究は多言語ジェイルブレイク攻撃の理解と緩和に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2024-01-30T06:04:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。