Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB
- URL: http://arxiv.org/abs/2504.01157v1
- Date: Tue, 01 Apr 2025 19:48:17 GMT
- Title: Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB
- Authors: Anas Dorbani, Sunny Yasser, Jimmy Lin, Amine Mhedhbi,
- Abstract summary: Large language models (LLMs) have made it easier to prototype such retrieval and reasoning data pipelines.<n>This often involves orchestrating data systems, managing data movement, and handling low-level details.<n>We introduce FlockMTL: an extension for abstractions that integrates deeply LLM capabilities and retrieval-augmented generation.
- Score: 44.057784044659726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge-intensive analytical applications retrieve context from both structured tabular data and unstructured, text-free documents for effective decision-making. Large language models (LLMs) have made it significantly easier to prototype such retrieval and reasoning data pipelines. However, implementing these pipelines efficiently still demands significant effort and has several challenges. This often involves orchestrating heterogeneous data systems, managing data movement, and handling low-level implementation details, e.g., LLM context management. To address these challenges, we introduce FlockMTL: an extension for DBMSs that deeply integrates LLM capabilities and retrieval-augmented generation (RAG). FlockMTL includes model-driven scalar and aggregate functions, enabling chained predictions through tuple-level mappings and reductions. Drawing inspiration from the relational model, FlockMTL incorporates: (i) cost-based optimizations, which seamlessly apply techniques such as batching and caching; and (ii) resource independence, enabled through novel SQL DDL abstractions: PROMPT and MODEL, introduced as first-class schema objects alongside TABLE. FlockMTL streamlines the development of knowledge-intensive analytical applications, and its optimizations ease the implementation burden.
Related papers
- LLM4Hint: Leveraging Large Language Models for Hint Recommendation in Offline Query Optimization [7.00597706249493]
This paper explores how Large Language Model (LLM) can be incorporated to enhance the generalization of learned phrases.<n>We propose textbfLLM4Hint that leverages moderate-sized backbone LLMs to recommend query optimization hints.
arXiv Detail & Related papers (2025-07-04T08:32:17Z) - Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - Large Language Models are Good Relational Learners [55.40941576497973]
We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for large language models (LLMs)<n>Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to process and reason over complex entity relationships.
arXiv Detail & Related papers (2025-06-06T04:07:55Z) - Towards Scalable Schema Mapping using Large Language Models [14.028425711746513]
We identify three core issues with using large language models (LLMs) for schema mapping.<n>We propose methods to address through sampling and aggregation techniques.<n>We propose to mitigate through strategies like data type prefiltering.
arXiv Detail & Related papers (2025-05-30T15:36:56Z) - Towards Agentic Schema Refinement [3.7173623393215287]
We propose a semantic layer in-between the database and the user as a set of small and easy-to-interpret database views.<n>Our approach paves the way for LLM-powered exploration of unwieldy databases.
arXiv Detail & Related papers (2024-11-25T19:57:16Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - Meaning Typed Prompting: A Technique for Efficient, Reliable Structured Output Generation [0.0]
We introduce Meaning Typed Prompting (MTP), a technique for efficient structured output generation.
By utilizing expressive type definitions, MTP enhances output clarity and reduces dependence on complex abstractions.
We present Semantix, a framework that implements MTP, providing practical insights into its application.
arXiv Detail & Related papers (2024-10-22T20:43:50Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - CRE-LLM: A Domain-Specific Chinese Relation Extraction Framework with Fine-tuned Large Language Model [1.9950682531209156]
Domain-Specific Chinese Relation Extraction (DSCRE) aims to extract relations between entities from domain-specific Chinese text.
Given the impressive performance of large language models (LLMs) in natural language processing, we propose a new framework called CRE-LLM.
arXiv Detail & Related papers (2024-04-28T06:27:15Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs)
SEED features an that automatically selects from the four LLM-assisted modules and forms a hybrid execution pipeline that best fits the task at hand.
arXiv Detail & Related papers (2023-10-01T17:59:20Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework [5.351873055148804]
Self-training framework generates diverse synthetic data with complex logic.
We optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios.
UCTRST achieves above 90% of the supervised model performance on different tasks and domains.
arXiv Detail & Related papers (2022-12-20T09:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.