論文の概要: Towards Resilient Federated Learning in CyberEdge Networks: Recent Advances and Future Trends
- arxiv url: http://arxiv.org/abs/2504.01240v1
- Date: Tue, 01 Apr 2025 23:06:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:17:41.941532
- Title: Towards Resilient Federated Learning in CyberEdge Networks: Recent Advances and Future Trends
- Title(参考訳): サイバーエッジネットワークにおけるレジリエントなフェデレーションラーニングに向けて:最近の進歩と今後の展望
- Authors: Kai Li, Zhengyang Zhang, Azadeh Pourkabirian, Wei Ni, Falko Dressler, Ozgur B. Akan,
- Abstract要約: 我々は,CyberEdgeネットワークにおけるレジリエント・フェデレート・ラーニング(ResFL)の最新技術について検討する。
我々は,集約的推論と機能指向型セキュリティ機構を用いた共同トレーニングに重点を置いている。
これらの進歩は、超低レイテンシ、人工知能(AI)駆動のネットワーク管理、敵攻撃に対するレジリエンスの改善を提供する。
- 参考スコア(独自算出の注目度): 20.469263896950437
- License:
- Abstract: In this survey, we investigate the most recent techniques of resilient federated learning (ResFL) in CyberEdge networks, focusing on joint training with agglomerative deduction and feature-oriented security mechanisms. We explore adaptive hierarchical learning strategies to tackle non-IID data challenges, improving scalability and reducing communication overhead. Fault tolerance techniques and agglomerative deduction mechanisms are studied to detect unreliable devices, refine model updates, and enhance convergence stability. Unlike existing FL security research, we comprehensively analyze feature-oriented threats, such as poisoning, inference, and reconstruction attacks that exploit model features. Moreover, we examine resilient aggregation techniques, anomaly detection, and cryptographic defenses, including differential privacy and secure multi-party computation, to strengthen FL security. In addition, we discuss the integration of 6G, large language models (LLMs), and interoperable learning frameworks to enhance privacy-preserving and decentralized cross-domain training. These advancements offer ultra-low latency, artificial intelligence (AI)-driven network management, and improved resilience against adversarial attacks, fostering the deployment of secure ResFL in CyberEdge networks.
- Abstract(参考訳): 本稿では,CyberEdgeネットワークにおけるレジリエント・フェデレート・ラーニング(ResFL)の最新の技術について検討し,集約的推論と機能指向型セキュリティ機構を用いた共同トレーニングに着目した。
非IIDデータ問題に対処し、スケーラビリティを改善し、通信オーバーヘッドを低減するための適応型階層型学習戦略を検討する。
信頼できないデバイスを検出し, モデル更新を洗練し, 収束安定性を高めるために, 耐故障性技術と凝集性推論機構について検討した。
既存のFLセキュリティ研究とは異なり、我々は、モデル特徴を利用する中毒、推論、再構築攻撃など、機能指向の脅威を包括的に分析する。
さらに、FLセキュリティを強化するために、レジリエントアグリゲーション技術、異常検出、差分プライバシやセキュアなマルチパーティ計算を含む暗号防御について検討する。
さらに、プライバシ保護と分散クロスドメイントレーニングを強化するために、6G、大規模言語モデル(LLM)、相互運用可能な学習フレームワークの統合についても論じる。
これらの進歩は、超低レイテンシ、人工知能(AI)駆動のネットワーク管理、敵攻撃に対するレジリエンスの改善、CyberEdgeネットワークへのセキュアなResFLのデプロイを促進する。
関連論文リスト
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Adaptive Cybersecurity: Dynamically Retrainable Firewalls for Real-Time Network Protection [4.169915659794567]
本研究は「動的にリトレーニング可能なファイアウォール」を紹介する。
トラフィックを検査する静的ルールに依存する従来のファイアウォールとは異なり、これらの先進的なシステムは機械学習アルゴリズムを活用して、ネットワークトラフィックパターンを動的に分析し、脅威を特定する。
また、パフォーマンスの改善、レイテンシの削減、リソース利用の最適化、Zero Trustや混在環境といった現在の概念とのインテグレーションの問題にも対処する戦略についても論じている。
論文 参考訳(メタデータ) (2025-01-14T00:04:35Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
敵対的攻撃、特にディープラーニングモデルの脆弱性を狙った攻撃は、サイバーセキュリティに対するニュアンスで重大な脅威となる。
本研究は,データポジショニング,テストタイムエベイション,リバースエンジニアリングなど,敵対的な学習の脅威について論じる。
我々の研究は、敵の攻撃によって引き起こされるネットワークセキュリティとプライバシの潜在的な侵害に対処するための防御メカニズムを強化するための基盤となる。
論文 参考訳(メタデータ) (2024-12-18T14:21:46Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
バックドアは、ディープニューラルネットワーク(DNN)上の悪意あるアクターと、データ処理のためのクラウドサービスによって悪用される。
提案手法は高度テンソル分解アルゴリズムを利用して,事前学習したDNNの重みを慎重に解析し,バックドアモデルとクリーンモデルとの区別を行う。
この進歩は、ネットワークシステムにおけるディープラーニングとAIのセキュリティを強化し、新興技術の脅威の進化に対して不可欠なサイバーセキュリティを提供する。
論文 参考訳(メタデータ) (2024-03-13T03:10:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。