Solving Time-Fractional Partial Integro-Differential Equations Using Tensor Neural Network
- URL: http://arxiv.org/abs/2504.01440v2
- Date: Sun, 06 Apr 2025 10:10:54 GMT
- Title: Solving Time-Fractional Partial Integro-Differential Equations Using Tensor Neural Network
- Authors: Zhongshuo Lin, Qingkui Ma, Hehu Xie, Xiaobo Yin,
- Abstract summary: We propose a novel machine learning method based on adaptive tensor neural network subspace to solve linear time-fractional diffusion-wave equations.<n>Some numerical examples are provided to validate the efficiency and accuracy of the proposed tensor neural network based machine learning method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel machine learning method based on adaptive tensor neural network subspace to solve linear time-fractional diffusion-wave equations and nonlinear time-fractional partial integro-differential equations. In this framework, the tensor neural network and Gauss-Jacobi quadrature are effectively combined to construct a universal numerical scheme for the temporal Caputo derivative with orders spanning $ (0,1)$ and $(1,2)$. Specifically, in order to effectively utilize Gauss-Jacobi quadrature to discretize Caputo derivatives, we design the tensor neural network function multiplied by the function $t^{\mu}$ where the power $\mu$ is selected according to the parameters of the equations at hand. Finally, some numerical examples are provided to validate the efficiency and accuracy of the proposed tensor neural network based machine learning method.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Randomized Forward Mode of Automatic Differentiation For Optimization
Algorithms [0.0]
We present a randomized forward mode gradient (RFG) as an alternative to backpropagation.
The probability distribution of the random vector determines the statistical properties of RFG.
By replacing gradient with RFG, a class of RFG-based optimization algorithms is obtained.
arXiv Detail & Related papers (2023-10-22T04:02:39Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
An innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations.
It effectively combines deep neural networks (DNNs) with approximation of fractional derivatives.
arXiv Detail & Related papers (2023-10-07T12:43:32Z) - Efficient SGD Neural Network Training via Sublinear Activated Neuron
Identification [22.361338848134025]
We present a fully connected two-layer neural network for shifted ReLU activation to enable activated neuron identification in sublinear time via geometric search.
We also prove that our algorithm can converge in $O(M2/epsilon2)$ time with network size quadratic in the coefficient norm upper bound $M$ and error term $epsilon$.
arXiv Detail & Related papers (2023-07-13T05:33:44Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Local Extreme Learning Machines and Domain Decomposition for Solving
Linear and Nonlinear Partial Differential Equations [0.0]
We present a neural network-based method for solving linear and nonlinear partial differential equations.
The method combines the ideas of extreme learning machines (ELM), domain decomposition and local neural networks.
We compare the current method with the deep Galerkin method (DGM) and the physics-informed neural network (PINN) in terms of the accuracy and computational cost.
arXiv Detail & Related papers (2020-12-04T23:19:39Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
We explore the performance and accuracy of various neural architectures on both linear and nonlinear differential equations.
We implement a novel Legendre-Galerkin Deep Neural Network (LGNet) algorithm to predict solutions to differential equations.
arXiv Detail & Related papers (2020-10-24T20:25:09Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.