論文の概要: Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2504.01459v1
- Date: Wed, 02 Apr 2025 08:15:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:02.992453
- Title: Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
- Title(参考訳): ゴールベース強化学習のための確率論的カリキュラム学習
- Authors: Llewyn Salt, Marcus Gallagher,
- Abstract要約: 報酬信号の最大化によって、人工エージェントに環境との対話を教えるアルゴリズムである強化学習は、近年大きな成功を収めている。
有望な研究の方向性の1つは、一般に階層的またはカリキュラム強化学習を通じて、マルチモーダルポリシーを許容するための目標の導入である。
本稿では,継続的制御およびナビゲーションタスクにおける強化学習エージェントの目標を提案するための,確率論的カリキュラム学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.5352713493505785
- License:
- Abstract: Reinforcement learning (RL) -- algorithms that teach artificial agents to interact with environments by maximising reward signals -- has achieved significant success in recent years. These successes have been facilitated by advances in algorithms (e.g., deep Q-learning, deep deterministic policy gradients, proximal policy optimisation, trust region policy optimisation, and soft actor-critic) and specialised computational resources such as GPUs and TPUs. One promising research direction involves introducing goals to allow multimodal policies, commonly through hierarchical or curriculum reinforcement learning. These methods systematically decompose complex behaviours into simpler sub-tasks, analogous to how humans progressively learn skills (e.g. we learn to run before we walk, or we learn arithmetic before calculus). However, fully automating goal creation remains an open challenge. We present a novel probabilistic curriculum learning algorithm to suggest goals for reinforcement learning agents in continuous control and navigation tasks.
- Abstract(参考訳): 強化学習(Reinforcement Learning、RL)は、報酬信号の最大化によって、人工エージェントに環境との対話を教えるアルゴリズムで、近年大きな成功を収めている。
これらの成功は、アルゴリズム(例えば、深いQ-ラーニング、深い決定論的ポリシー勾配、近性ポリシー最適化、信頼領域ポリシー最適化、ソフトアクター批判)とGPUやTPUのような特別な計算資源によって促進されている。
有望な研究の方向性の1つは、一般に階層的またはカリキュラム強化学習を通じて、マルチモーダルポリシーを許容するための目標の導入である。
これらの手法は、複雑な振る舞いをより単純なサブタスクに体系的に分解し、人間が徐々にスキルを学ぶ方法と類似する(例えば、歩く前に走ることを学ぶか、計算の前に算術を学ぶ)。
しかし、完全なゴール作成の自動化は依然としてオープンな課題である。
本稿では,継続的制御とナビゲーションタスクにおける強化学習エージェントの目標を提案する新しい確率論的カリキュラム学習アルゴリズムを提案する。
関連論文リスト
- Efficient Exploration in Deep Reinforcement Learning: A Novel Bayesian Actor-Critic Algorithm [0.195804735329484]
強化学習(RL)と深層強化学習(DRL)は破壊する可能性があり、我々が世界と対話する方法を既に変えている。
適用可能性の重要な指標の1つは、実世界のシナリオでスケールして機能する能力である。
論文 参考訳(メタデータ) (2024-08-19T14:50:48Z) - Discovering Temporally-Aware Reinforcement Learning Algorithms [42.016150906831776]
既存の2つの目的発見アプローチに簡単な拡張を提案する。
一般的に使用されるメタ段階的アプローチは適応的目的関数の発見に失敗する。
論文 参考訳(メタデータ) (2024-02-08T17:07:42Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
ゴール条件強化学習は、ナビゲーションや操作を含む幅広い領域のタスクを解決できる。
本研究では,学習時間における探索を用いて,中間状態を自動生成する遠隔目標獲得タスクを提案する。
E-stepはグラフ検索を用いて最適な経路点列を計画することに対応し、M-stepはそれらの経路点に到達するための目標条件付きポリシーを学習することを目的としている。
論文 参考訳(メタデータ) (2021-10-22T22:05:31Z) - The Information Geometry of Unsupervised Reinforcement Learning [133.20816939521941]
教師なしスキル発見(英語: Unsupervised skill discovery)とは、報酬関数にアクセスせずに一連のポリシーを学ぶアルゴリズムのクラスである。
教師なしのスキル発見アルゴリズムは、あらゆる報酬関数に最適なスキルを学習しないことを示す。
論文 参考訳(メタデータ) (2021-10-06T13:08:36Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - GRAC: Self-Guided and Self-Regularized Actor-Critic [24.268453994605512]
本稿では,ターゲットネットワークを必要とせず,分散に対処する自己正規化TD学習手法を提案する。
また,政策段階とゼロオーダー最適化を組み合わせた自己誘導型政策改善手法を提案する。
これにより、Q関数近似におけるローカルノイズに対する学習をより堅牢にし、アクターネットワークのアップデートをガイドします。
テスト対象のすべての環境において, OpenAI ジムタスクのスイート上で GRAC を評価する。
論文 参考訳(メタデータ) (2020-09-18T17:58:29Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
強化学習アルゴリズムは、いくつかのルールの1つに従ってエージェントのパラメータを更新する。
本稿では,更新ルール全体を検出するメタラーニング手法を提案する。
これには、一連の環境と対話することで、"何を予測するか"(例えば、値関数)と"どのように学習するか"の両方が含まれている。
論文 参考訳(メタデータ) (2020-07-17T07:38:39Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
本稿では,深層ニューラルネットワークによって柔軟にパラメータ化される,自己目的のメタ段階的降下に基づくアルゴリズムを提案する。
目的はオンラインで発見されるため、時間とともに変化に適応することができる。
Atari Learning Environmentでは、メタグラディエントアルゴリズムが時間とともに適応して、より効率よく学習する。
論文 参考訳(メタデータ) (2020-07-16T16:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。