Redefining technology for indigenous languages
- URL: http://arxiv.org/abs/2504.01522v1
- Date: Wed, 02 Apr 2025 09:08:53 GMT
- Title: Redefining technology for indigenous languages
- Authors: Silvia Fernandez-Sabido, Laura Peniche-Sabido,
- Abstract summary: We offer an overview of indigenous languages, identifying the causes of their devaluation and the need for legislation on language rights.<n>We review the technologies used to revitalize these languages, finding that when they come from outside, they often have the opposite effect to what they seek.<n>We propose that the inclusion of Indigenous knowledge in large language models (LLMs) will enrich the technological landscape, but must be done in a participatory environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we offer an overview of indigenous languages, identifying the causes of their devaluation and the need for legislation on language rights. We review the technologies used to revitalize these languages, finding that when they come from outside, they often have the opposite effect to what they seek; however, when developed from within communities, they become powerful instruments of expression. We propose that the inclusion of Indigenous knowledge in large language models (LLMs) will enrich the technological landscape, but must be done in a participatory environment that encourages the exchange of knowledge.
Related papers
- Designing Speech Technologies for Australian Aboriginal English: Opportunities, Risks and Participation [1.7625047963881761]
Post-contact language varieties emerged in Australia as a result of forced contact between Indigenous communities and English speakers.
These contact varieties are widely used, yet are poorly supported by language technologies.
This gap presents barriers to participation in civil and economic society for Indigenous communities using these varieties.
arXiv Detail & Related papers (2025-03-05T05:07:39Z) - LIMBA: An Open-Source Framework for the Preservation and Valorization of Low-Resource Languages using Generative Models [62.47865866398233]
This white paper proposes a framework to generate linguistic tools for low-resource languages.
By addressing the data scarcity that hinders intelligent applications for such languages, we contribute to promoting linguistic diversity.
arXiv Detail & Related papers (2024-11-20T16:59:41Z) - Harnessing the Power of Artificial Intelligence to Vitalize Endangered Indigenous Languages: Technologies and Experiences [31.62071644137294]
We discuss the decreasing diversity of languages in the world and how working with Indigenous languages poses unique ethical challenges for AI and NLP.
We report encouraging results in the development of high-quality machine learning translators for Indigenous languages.
We present prototypes we have built in projects done in 2023 and 2024 with Indigenous communities in Brazil, aimed at facilitating writing.
arXiv Detail & Related papers (2024-07-17T14:46:37Z) - NLP Progress in Indigenous Latin American Languages [44.8359369488204]
The paper focuses on the marginalization of indigenous language communities in the face of rapid technological advancements.
We highlight the cultural richness of these languages and the risk they face of being overlooked in the realm of Natural Language Processing.
arXiv Detail & Related papers (2024-04-08T10:04:55Z) - What Do Dialect Speakers Want? A Survey of Attitudes Towards Language Technology for German Dialects [60.8361859783634]
We survey speakers of dialects and regional languages related to German.
We find that respondents are especially in favour of potential NLP tools that work with dialectal input.
arXiv Detail & Related papers (2024-02-19T09:15:28Z) - "It's how you do things that matters": Attending to Process to Better
Serve Indigenous Communities with Language Technologies [2.821682550792172]
This position paper explores ethical considerations in building NLP technologies for Indigenous languages.
We report on interviews with 17 researchers working in or with Aboriginal and/or Torres Strait Islander communities.
We recommend practices for NLP researchers to increase attention to the process of engagements with Indigenous communities.
arXiv Detail & Related papers (2024-02-04T23:23:51Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
This tutorial aims to help narrow the gap between those who study language models and those who are intrigued and want to learn more.
We offer a scientific viewpoint that focuses on questions amenable to study through experimentation.
We situate language models as they are today in the context of the research that led to their development.
arXiv Detail & Related papers (2023-11-29T01:19:02Z) - Neural Machine Translation for the Indigenous Languages of the Americas:
An Introduction [102.13536517783837]
Most languages from the Americas are among them, having a limited amount of parallel and monolingual data, if any.
We discuss the recent advances and findings and open questions, product of an increased interest of the NLP community in these languages.
arXiv Detail & Related papers (2023-06-11T23:27:47Z) - Not always about you: Prioritizing community needs when developing
endangered language technology [5.670857685983896]
We discuss the unique technological, cultural, practical, and ethical challenges that researchers and indigenous speech community members face.
We report the perspectives of language teachers, Master Speakers and elders from indigenous communities, as well as the point of view of academics.
arXiv Detail & Related papers (2022-04-12T05:59:39Z) - Including Signed Languages in Natural Language Processing [48.62744923724317]
Signed languages are the primary means of communication for many deaf and hard of hearing individuals.
This position paper calls on the NLP community to include signed languages as a research area with high social and scientific impact.
arXiv Detail & Related papers (2021-05-11T17:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.