Optimizing Package Delivery with Quantum Annealers: Addressing Time-Windows and Simultaneous Pickup and Delivery
- URL: http://arxiv.org/abs/2504.01560v1
- Date: Wed, 02 Apr 2025 10:01:34 GMT
- Title: Optimizing Package Delivery with Quantum Annealers: Addressing Time-Windows and Simultaneous Pickup and Delivery
- Authors: Eneko Osaba, Esther Villar-Rodriguez, Pablo Miranda-Rodriguez, Antón Asla,
- Abstract summary: We resort to our previously published quantum-classical technique for addressing real-world-oriented routing problems.<n>We elaborate on solving additional realistic problem instances.
- Score: 0.3774866290142281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research at the intersection of quantum computing and routing problems has been highly prolific. Much of this work focuses on classical problems such as the Traveling Salesman Problem and the Vehicle Routing Problem. The practical applicability of these problems depends on the specific objectives and constraints considered. However, it is undeniable that translating complex real-world requirements into these classical formulations often proves challenging. In this paper, we resort to our previously published quantum-classical technique for addressing real-world-oriented routing problems, known as Quantum for Real Package Delivery (Q4RPD), and elaborate on solving additional realistic problem instances. Accordingly, this paper emphasizes the following characteristics: i) simultaneous pickup and deliveries, ii) time-windows, and iii) mobility restrictions by vehicle type. To illustrate the application of Q4RPD, we have conducted an experimentation comprising seven instances, serving as a demonstration of the newly developed features.
Related papers
- Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.
We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.
For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - Solving a Real-World Package Delivery Routing Problem Using Quantum Annealers [0.44241702149260353]
This research focuses on the conjunction between quantum computing and routing problems.
The main objective of this research is to present a solving scheme for dealing with realistic instances.
arXiv Detail & Related papers (2024-03-22T11:16:11Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Solving Logistic-Oriented Bin Packing Problems Through a Hybrid
Quantum-Classical Approach [0.44241702149260353]
Bin Packing Problem is a classic problem with wide industrial applicability.
We resort to our previously published quantum-classical framework known as Q4RealBPP.
arXiv Detail & Related papers (2023-08-05T04:36:33Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Supply Chain Logistics with Quantum and Classical Annealing Algorithms [0.0]
Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-scale optimization problems of practical importance.
We investigate a problem of substantial commercial value, multi-truck vehicle routing for supply chain logistics, at the scale used by a corporation in their operations.
Our work gives a set of techniques that can be adopted in contexts beyond vehicle routing to apply NISQ devices in a hybrid fashion to large-scale problems of commercial interest.
arXiv Detail & Related papers (2022-05-09T17:36:21Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum annealing in the NISQ era: railway conflict management [0.44040106718326594]
We consider a practical railway dispatching problem: delay and conflict management on single-track railway lines.
We introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, compatible with the emerging quantum annealing technology.
As a proof-of-concept, we solve selected real-life problems from the Polish railway network using D-Wave quantum annealers.
arXiv Detail & Related papers (2021-12-07T13:17:21Z) - Quantum computing approach to railway dispatching and conflict
management optimization on single-track railway lines [0.4724825031148411]
We consider a practical railway dispatching problem: delay and conflict management on a single-track railway line.
We introduce a quadratic unconstrained binary optimization (QUBO) model of the problem in question, compatible with the emerging quantum annealing technology.
As a proof-of-concept, we solve selected real-life problems from the Polish railway network using D-Wave quantum annealers.
arXiv Detail & Related papers (2020-10-16T08:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.