Sub-second spin and lifetime-limited optical coherences in $^{171}$Yb$^{3+}$:CaWO$_4$
- URL: http://arxiv.org/abs/2504.01592v1
- Date: Wed, 02 Apr 2025 10:57:01 GMT
- Title: Sub-second spin and lifetime-limited optical coherences in $^{171}$Yb$^{3+}$:CaWO$_4$
- Authors: Alexey Tiranov, Emanuel Green, Sophie Hermans, Erin Liu, Federico Chiossi, Diana Serrano, Pascal Loiseau, Achuthan Manoj Kumar, Sylvain Bertaina, Andrei Faraon, Philippe Goldner,
- Abstract summary: We introduce $171$Yb$3+$ ions doped into a CaWO$_4$ crystal.<n>We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms.<n>These results demonstrate the potential of $171$Yb$3+$:CaWO$_4$ as a low-noise platform for building quantum technologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optically addressable solid-state spins have been extensively studied for quantum technologies, offering unique advantages for quantum computing, communication, and sensing. Advancing these applications is generally limited by finding materials that simultaneously provide lifetime-limited optical and long spin coherences. Here, we introduce $^{171}$Yb$^{3+}$ ions doped into a CaWO$_4$ crystal. We perform high-resolution spectroscopy of the excited state, and demonstrate all-optical coherent control of the electron-nuclear spin ensemble. We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms. Next to this, we measure a spin-transition ensemble line width of 5 kHz and electron-nuclear spin coherence time reaching 0.15 seconds at zero magnetic field between 50 mK and 1 K temperatures. These results demonstrate the potential of $^{171}$Yb$^{3+}$:CaWO$_4$ as a low-noise platform for building quantum technologies with ensemble-based memories, microwave-to-optical transducers, and optically addressable single-ion spin qubits.
Related papers
- Optical Nuclear Electric Resonance as Single Qubit Gate for Trapped Neutral Atoms [0.0]
We propose a fast and robust single qubit gate in $87$Sr, utilizing the concept of optical nuclear electric resonance (ONER)<n>Our simulations show that ONER could enable faster spin operations compared to the state-of-the-art oscillations in this 'atomic qubit'
arXiv Detail & Related papers (2025-01-19T20:38:13Z) - Optical coherence and spin population dynamics in
$^{171}$Yb$^{3+}$:Y$_2$SiO$_5$ single crystals [0.0]
We study optical homogeneous linewidths in two 171 Yb:YSO crystals doped at 2 and 10 ppm.
Our results show that above 6 K the homogeneous linewidth is mainly due to an elastic two-phonon process.
At lower temperatures, interactions with $89$Yb nuclear spin-flips, paramagnetic defects or impurities, are likely the main limiting factor to the homogeneous linewidth.
arXiv Detail & Related papers (2023-12-01T13:38:34Z) - Optical and spin coherence of Er$^{3+}$ in epitaxial CeO$_2$ on silicon [0.0]
We report on the optical homogeneous linewidth and electron spin coherence of Er$3+$ ions doped in CeO$$ epitaxial film.
The long-lived optical transition near 1530 nm in the environmentally-protected 4f shell of Er$3+$ shows a narrow homogeneous linewidth of 440 kHz.
The reduced nuclear spin noise in the host allows for Er$3+$ electron spin polarization at 3.6 K, yielding an electron spin coherence of 0.66 $mu$s and a spin relaxation of 2.5 ms.
arXiv Detail & Related papers (2023-09-28T18:22:56Z) - Optical coherence properties of Kramers' rare-earth ions at the
nanoscale for quantum applications [41.30071614056703]
Rare-earth (RE) ion doped nano-materials are promising candidates for a range of quantum technology applications.
Among RE ions, the so-called Kramers' ions possess spin transitions in the GHz range at low magnetic fields.
We measure spectroscopic properties that are of relevance to using these materials in quantum technology applications.
arXiv Detail & Related papers (2023-03-03T16:23:29Z) - Coherent optical-microwave interface for manipulation of low-field
electronic clock transitions in $^{171}$Yb$^{3+}$:Y$_2$SiO$_5$ [0.0]
coherent interaction of solid-state spins with both optical and microwave fields provides a platform for quantum technologies.
We use a loop-gap microwave resonator to coherently drive optical and microwave clock transitions over a long crystal.
We provide new insights into the spin dephasing mechanism at very low fields, showing that superhyperfine-induced collapse of the Hahn echo signal plays an important role at low fields.
arXiv Detail & Related papers (2022-09-09T09:19:28Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Time-correlated Photons from a In$_{0.5}$Ga$_{0.5}$P Photonic Crystal
Cavity on a Silicon Chip [55.41644538483948]
Time-correlated photon pairs are generated by triply-resonant Four-Wave-Mixing in a In$_0.5$Ga$_0.5$P Photonic Crystal cavitiy.
The generation rate reaches 5 MHz in cavities with Q-factor $approx 4times 104$, more than one order of magnitude larger than what is measured using ring resonators with similar Q factors fabricated on the same chip.
arXiv Detail & Related papers (2022-02-19T15:22:06Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.